Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Want to petrify wood without waiting a few million years? Try this

25.01.2005


Soaked, Dried & Petrified: An electron microscopic image shows a cross section of wood that was artificially petrified in days, mimicking a natural process that takes millions of years. Materials scientists are interested in the novel properties of ceramics built on wood templates. (Photo credit: Pacific Northwest National Laboratory.)


Pacific Northwest National Laboratory scientists can mineralize wood in record time

California has Silicon Valley. Could a Silicon Forest in Washington be next? A team of materials scientists from Pacific Northwest National Laboratory is on it.

Yongsoon Shin and colleagues at the Department of Energy lab have converted wood to mineral, achieving in days what it takes nature millions of years to do in such places as the Gingko Petrified Forest, an hour up the Columbia River. There, trees likely felled in a cataclysmic eruption and, buried without oxygen beneath lava, leached out their woody compounds and sponged up the soil’s minerals over the eons.



Shin’s petrified wood journey began in a less dramatic fashion, a few minutes away at Lowe’s, Shin’s group reports in the current issue of the journal Advanced Materials, in the do-it-yourselfer chain’s lumberyard,. There they picked up their raw material: pine and poplar boards. Back at PNNL, they gave a 1 centimeter cube of wood a two-day acid bath, soaked it in a silica solution for two more (for best results, repeat this step up to three times), air-dried it, popped it into an argon-filled furnace gradually cranked up to 1,400 degrees centigrade to cook for two hours, then let cool in argon to room temperature.

Presto. Instant petrified wood, the silica taking up permanent residence with the carbon left in the cellulose to form a new silicon carbide, or SiC, ceramic. The material "replicates exactly the wood architecture," according to Shin.

Although SiC chips are unlikely to replace computer chips, materials scientists are interested in the novel properties of ceramics built on templates of wood and, in Shin’s lab, other natural materials such as pollen and rice hulls. The intricate network of microchannels and pores in plant matter provide enormous surfaces--in wood, 1 gram of material flattened out would cover a football field--that may prove useful in industrial chemical separations or filtering pollutants from gaseous effluents.

The acid-leaching method yields an identical, positive reproduction of the wood. If Shin wants to capture a negative impression, he can alter the pH to favor the base end of the scale.

"The positive replica is a lot better in terms of surface area and uniformity," Shin said. "Negative forms collapse easily, but it is possible to make fiber-type materials," where the minerals fill in wood-grain openings.

Bill Cannon | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>