Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice refining production of pure nanotube fibers

03.09.2004


Pioneering fiber production methods similar to those of Kevlar(R), Zylon(R)

Rice University scientists are refining pioneering chemical production methods used to make pure carbon nanotube fibers. Research appearing in tomorrow’s issue of the journal Science describes the scalable production techniques, which yield highly aligned, continuous macroscopic fibers composed solely of single-walled carbon nanotubes (SWNTs), the type of carbon nanotubes with the best mechanical and transport properties.

Rice chemist Richard Smalley, director of Rice’s Carbon Nanotechnology Laboratory, said the production methods CNL is pioneering for single-walled carbon nanotube fibers are similar to those used in making two of the world’s strongest commercially available fibers, Kevlar® and Zylon®. CNL’s fiber research team expects the development path of pure nanotube fibers to follow a similar track to those two as well, with several years of refinement in processing and a significant investment needed for research prior to commercial availability.



The Air Force and its industrial partners spent a decade and more than $100 million perfecting Zylon, the strongest fiber on the market today. Zylon is about twice as strong as Kevlar, the material used to make much of the world’s bulletproof body armor. Ultimately, CNL researchers believe pure nanotube fibers hold the promise of being 10 times stronger than Zylon.

"The early results are auspicious," said Smalley, University Professor, the Gene and Norman Hackerman Professor of Chemistry and professor of physics at Rice. "We’ve got no impurities, our densities are about 77 percent of what’s theoretically possible, and we’re confident that the strength and conductance will improve as we refine the heat treatment, spinning and other elements of production."

In 2000, a team of researchers centered at Rice in Smalley’s research group began in earnest to spin a fiber from SWNTs dispersed at high concentration in a strong acid. Ongoing work at that time showed that SWNTs interact strongly with sulfuric acid and assemble into endless spaghetti-like domains composed of a myriad of highly aligned, mobile SWNTs. This Science article is the fifth paper reporting the four-year journey that resulted in the current discovery. Researchers at the University of Pennsylvania’s Department of Materials Science and Engineering helped determine the structure of the nanotube acid dispersion. "The SWNT fiber project is one of the ’holy grails’ of nanotechnology -- spin a pure single-walled nanotube fiber with the highest strength of any fiber possible," said paper co-author Wade Adams, director of Rice’s Center for Nanoscale Science and Technology (CNST).

Adams said Rice’s fiber project was one of the factors that enticed him to join CNST in 2002 following his retirement after 32 years of service at the Air Force Research Laboratory at Wright-Patterson Air Force Base in Dayton, Ohio. "The Air Force developed what is now called Zylon fiber from a rod-like polymer, with tensile properties twice that of Kevlar fiber," said Adams. "SWNTs are predicted to have tensile strengths many times that of Zylon or Kevlar, based upon the much greater theoretical strength of the single molecule carbon nanotube. However, unlike Zylon and Kevlar, SWNTs are also excellent conductors of electricity and heat. This unique multifunctionality makes them candidates for many critical applications beyond structural ones."

Nanotubes are hollow cylinders of pure carbon that are just one atom thick. In addition to being very strong, nanotubes can also be either metals or semiconductors, which means they could be used to manufacture materials that are both "smart" and ultrastrong. NASA, for example, is researching how composite materials containing nanotubes could be used to build lighter, stronger aircraft and spacecraft.

Chemically, carbon nanotubes are difficult to work with. They are strongly attracted to one another and tend to stick together in hairball-like clumps. Scientists have developed ways to untangle and sort small amounts of nanotubes but have not found a satisfactory way to achieve stable dispersions suitable for processing. To date, the medium of choice has been detergent and water solutions that contain less than 1 percent of dispersed nanotubes by volume and are processed with polymer solutions. Such concentrations are too low to support industrial processes aimed at making large nanotube fibers. Moreover, it is difficult to remove all the soap and polymer and convert the nanotubes back into their pure form.

Rice’s team believes they have overcome the major hurdle to industrial production of macroscale SWNT objects -- finding a way to store large amounts of nanotubes in liquid form. By using strong sulfuric acid, a team of chemists and chemical engineers was able to disperse up to 10 percent by weight of pure carbon nanotubes -- more than 10 times the highest concentrations previously achieved. This new processing route uses no polymeric additives or detergents, which were used in previous processing methods and are known to be an obstacle to commercial scalability and final product purity.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Materials Sciences:

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

nachricht When Proteins Shake Hands
19.02.2018 | Friedrich-Schiller-Universität Jena

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>