Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combinatorial techniques yield polymer libraries to expedite materials testing and design

02.04.2004


Today’s advanced materials have become extremely complex in chemistry, structure and function, which means scientists need faster, more efficient ways to model and test new designs.


SEM micrographs of fracture surfaces at various impact sites from high-throughput mechanical screening on a composition-gradient library of polyurethane urea



J. Carson Meredith, an assistant professor of chemical and biomolecular engineering at the Georgia Institute of Technology, has pioneered combinatorial synthesis and high-throughput screening in polymer science – techniques that allow researchers to create and evaluate thousands of polymeric materials in a single experiment. On April 1 at the American Chemical Society’s 227th national meeting in Anaheim, Calif., Meredith will present recent advances in biomedical and electronic polymers.

Meredith began his research in 1998 while working on a new biomaterial at the National Institute of Standards and Technology. At that time, measuring biological and mechanical properties of polymers was an expensive and time-consuming task.


"As we thought about it, we realized the number of experiments we’d have to run was too large," Meredith recalled. "So we took a step back and asked, ’What if we could test 1,000 samples at once?’ "

Inspired by combinatorial methods used in drug discovery, Meredith developed a technology for depositing large collections of polymers on a single microscope slide, using property gradients to create thousands of variations in composition, temperature and thickness.

These polymer libraries dramatically reduce the time and effort required to develop new materials. What’s more, statistical reliability is increased when taking measurements under the same environment.

"In contrast, with a traditional one-sample-per-one-measurement approach, you run the risk of not fully optimizing the material," Meredith said. "Or you could completely miss the material you wanted to find in the first place."

Since joining Georgia Tech in 2000, Meredith has been applying his technologies to develop new materials in the biomedical and electronic arenas.

"Biomedical materials are especially challenging to design because they must be compatible with the human body," Meredith explained. "Yet the physical surface of polymers can affect the attachment and function of biological cells."

Achieving control over cellular interaction with synthetic surfaces will open new doors in biomaterials, such as engineering artificial tissues that are alternatives to organ transplants or deliver drugs only to diseased cells.

Collaborating with Andrés García in Georgia Tech’s Woodruff School of Mechanical Engineering, Meredith has already developed a technique for growing bone cells on polymer libraries and discovered a unique polymer formulation that causes optimal function.

"By changing the physical microstructure of the polymer, you can achieve large changes in how biological cells respond," Meredith explained. "The polymer libraries allow us to pinpoint very accurately the precise composition that works."

Meredith’s research team is also working on cardiovascular biomaterials for artificial blood vessels. "It’s difficult to get cells that line the arteries to grow correctly on a synthetic material," Meredith said. "We have to fool them into believing they’re inside a real artery instead of a plastic tube."

Beyond biomedicine, Meredith is also using combinatorial synthesis and high-throughput screenings to develop new electronic materials.

His research team is working on a technology to manufacture polymeric computer chips. Because polymers are flexible, they offer superior mechanical properties for electronic components in contrast to traditional silicon, which is hard and brittle.

Yet at nanoscale thicknesses, getting these thin films to adhere to each other has been a major challenge. Using the polymer libraries, the researchers have discovered that the ability of an insulator film to coat a semiconducting polymer is a strong function of thickness. "Now we’re exploring what thickness will provide the optimal material," Meredith said.

Critics may deem combinatorial techniques a shotgun approach, but it’s hardly a random process, said Meredith, who uses predictive models and previous data to help select material combinations to screen.

And discovering a winning polymer is only part of the equation. It’s critical to mine all the data and then explain scientifically why some materials work and others don’t, he noted.

"We’ve been surprised by how much the libraries tell us, especially in case of biomaterials," Meredith said. "This knowledge creation is just as important as the materials development side."


Technical Contact:
Carson Meredith, 404-385-2151 or carson.meredith@chbe.gatech.edu

Jane Sanders | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Materials Sciences:

nachricht Nagoya University researchers break down plastic waste
29.05.2017 | Nagoya University

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>