Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combinatorial techniques yield polymer libraries to expedite materials testing and design

02.04.2004


Today’s advanced materials have become extremely complex in chemistry, structure and function, which means scientists need faster, more efficient ways to model and test new designs.


SEM micrographs of fracture surfaces at various impact sites from high-throughput mechanical screening on a composition-gradient library of polyurethane urea



J. Carson Meredith, an assistant professor of chemical and biomolecular engineering at the Georgia Institute of Technology, has pioneered combinatorial synthesis and high-throughput screening in polymer science – techniques that allow researchers to create and evaluate thousands of polymeric materials in a single experiment. On April 1 at the American Chemical Society’s 227th national meeting in Anaheim, Calif., Meredith will present recent advances in biomedical and electronic polymers.

Meredith began his research in 1998 while working on a new biomaterial at the National Institute of Standards and Technology. At that time, measuring biological and mechanical properties of polymers was an expensive and time-consuming task.


"As we thought about it, we realized the number of experiments we’d have to run was too large," Meredith recalled. "So we took a step back and asked, ’What if we could test 1,000 samples at once?’ "

Inspired by combinatorial methods used in drug discovery, Meredith developed a technology for depositing large collections of polymers on a single microscope slide, using property gradients to create thousands of variations in composition, temperature and thickness.

These polymer libraries dramatically reduce the time and effort required to develop new materials. What’s more, statistical reliability is increased when taking measurements under the same environment.

"In contrast, with a traditional one-sample-per-one-measurement approach, you run the risk of not fully optimizing the material," Meredith said. "Or you could completely miss the material you wanted to find in the first place."

Since joining Georgia Tech in 2000, Meredith has been applying his technologies to develop new materials in the biomedical and electronic arenas.

"Biomedical materials are especially challenging to design because they must be compatible with the human body," Meredith explained. "Yet the physical surface of polymers can affect the attachment and function of biological cells."

Achieving control over cellular interaction with synthetic surfaces will open new doors in biomaterials, such as engineering artificial tissues that are alternatives to organ transplants or deliver drugs only to diseased cells.

Collaborating with Andrés García in Georgia Tech’s Woodruff School of Mechanical Engineering, Meredith has already developed a technique for growing bone cells on polymer libraries and discovered a unique polymer formulation that causes optimal function.

"By changing the physical microstructure of the polymer, you can achieve large changes in how biological cells respond," Meredith explained. "The polymer libraries allow us to pinpoint very accurately the precise composition that works."

Meredith’s research team is also working on cardiovascular biomaterials for artificial blood vessels. "It’s difficult to get cells that line the arteries to grow correctly on a synthetic material," Meredith said. "We have to fool them into believing they’re inside a real artery instead of a plastic tube."

Beyond biomedicine, Meredith is also using combinatorial synthesis and high-throughput screenings to develop new electronic materials.

His research team is working on a technology to manufacture polymeric computer chips. Because polymers are flexible, they offer superior mechanical properties for electronic components in contrast to traditional silicon, which is hard and brittle.

Yet at nanoscale thicknesses, getting these thin films to adhere to each other has been a major challenge. Using the polymer libraries, the researchers have discovered that the ability of an insulator film to coat a semiconducting polymer is a strong function of thickness. "Now we’re exploring what thickness will provide the optimal material," Meredith said.

Critics may deem combinatorial techniques a shotgun approach, but it’s hardly a random process, said Meredith, who uses predictive models and previous data to help select material combinations to screen.

And discovering a winning polymer is only part of the equation. It’s critical to mine all the data and then explain scientifically why some materials work and others don’t, he noted.

"We’ve been surprised by how much the libraries tell us, especially in case of biomaterials," Meredith said. "This knowledge creation is just as important as the materials development side."


Technical Contact:
Carson Meredith, 404-385-2151 or carson.meredith@chbe.gatech.edu

Jane Sanders | EurekAlert!
Further information:
http://gtresearchnews.gatech.edu/

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>