Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doping Buckyballs With Atoms, One at a Time

12.03.2004


Researchers Tune the Electronic Properties of Individual C60 Molecules


By using the STM’s tip to move a C60 molecule over potassium atoms one at a time, the buckyball can reliably be made to acquire up to four potassium-atom dopants


As a buckyball acquires potassium-atom dopants the energy state of its molecular orbitals shifts, causing the doped molecule to "light up" in the STM image.



A team led by Michael Crommie, a staff scientist in Lawrence Berkeley National Laboratory’s Materials Sciences Division and a professor of physics at the University of California at Berkeley, has used a scanning tunneling microscope (STM) to attach individual potassium atoms to isolated carbon-60 molecules.

By adding potassium atoms to familiar soccer-ball-shaped "buckyballs," Crommie and his coworkers can increase the electric charge on each C60 molecule; individual potassium atoms are either attached or removed from a C60 molecule using the tip of an STM. The method demonstrates that the electronic properties of an individual molecular structure can be reversibly tuned with atomic precision. The researchers report their work in the 12 March 2004 issue of the journal Science.


"Doping materials is a fundamental component of the entire modern electronics industry," Crommie says, referring to the process of adding impurities like phosphorus or boron to semiconductors like silicon to give the doped material an excess of negatively charged electrons or positively charged holes.

Junctions between n-type and p-type semiconductors are at the heart of the diodes, transistors, integrated circuits, computer chips, and other devices that make possible personal computers, cell phones, CD and DVD players, solar cells, and hundreds of other electronic gadgets. Doping bulk materials is well understood, says Crommie, "but we need to take these techniques and scale them all the way down to the single-molecule level."

At this level, one or two extra electrons’ worth of charge can affect the performance of critical electronic components. Building a molecular p-type/n-type junction might require electron doping of one molecule and hole doping of another. "With this work we’ve shown how to control the electron doping with absolute precision," Crommie says.

Crystals and monolayers of buckyballs and other fullerenes have long been doped by introducing metal atoms like potassium or rubidium. Crommie and his colleagues extended the process to the atomic level by depositing widely separated C60 molecules and potassium atoms on the surface of a silver crystal polished to virtually perfect flatness. The samples were prepared in ultrahigh vacuum and cooled in an STM to just seven degrees Kelvin above absolute zero.

In an STM a voltage bias between a fine probe, only a few atoms wide at its tip, and the surface of the sample being investigated causes an electric current to tunnel between them. The strength of the current yields information about the sample’s microscopic shape and electronic structure. And by bringing the tip close enough to attract individual atoms or molecules, they can be moved at will.

After depositing C60 molecules and potassium atoms on the silver surface, Crommie’s group mapped their positions, then used the STM’s tip to move the buckyballs over the potassium atoms, picking them up one at a time — like a molecular Pac-Man. In this way a buckyball could reliably be made to pick up from one to four potassium atoms. By then moving the buckyball over an impurity in the silver surface (most likely an oxygen atom), the potassium atoms could be "pulled off" one at a time.

The shape of an individual C60 molecule did not change significantly when potassium atoms were added: a buckyball with four potassium atoms was about nine percent wider and three percent shorter than an unadorned buckyball.

Electronic changes were more marked. The added charge donated by the potassium atoms caused the molecular orbital states of the C60 molecule to fill with electrons in a way analogous to the way the conduction band of a semiconductor fills with electrons when it is n-doped. Unlike the potassium-doping of C60 in extended monolayers and bulk crystals, however, where potassium atoms contribute one electron each, here each potassium atom contributed only about 0.6 of an electron’s charge to the individual buckyball.

These results suggest that the potassium atoms collect at the interface where the C60 molecule meets the silver surface, partially hiding from the STM’s probe and sharing part of their charge with the silver substrate.

Until now, controlling the electronic properties of molecular structures in the developing field of nanotechnology (a nanometer is one billionth of a meter) usually involved having chemists synthesize new starting materials in a test-tube or "gating" the structure — i.e., influencing the electronic environment with nearby electrodes. The new work offers a third way, with the major advantage of flexibility.

"If you want molecular structures to jump up and dance, the name of the game is control," says Crommie. "Tunability is the key to tailoring the electronic properties of individual molecules. We have demonstrated that we can do this in situ in a controllable, reversible way."

"Controlled Atomic Doping of a Single C60 Molecule," by Ryan Yamachika, Michael Grobis, Andre Wachowiak, and Michael F. Crommie, appears in the 12 March 2004 issue of Science.

The Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at http://www.lbl.gov.

Paul Preuss | LBNL
Further information:
http://www.lbl.gov/Science-Articles/Archive/MSD-doping-buckyballs.html
http://www.physics.berkeley.edu/research/crommie/index.html

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>