Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doping Buckyballs With Atoms, One at a Time

12.03.2004


Researchers Tune the Electronic Properties of Individual C60 Molecules


By using the STM’s tip to move a C60 molecule over potassium atoms one at a time, the buckyball can reliably be made to acquire up to four potassium-atom dopants


As a buckyball acquires potassium-atom dopants the energy state of its molecular orbitals shifts, causing the doped molecule to "light up" in the STM image.



A team led by Michael Crommie, a staff scientist in Lawrence Berkeley National Laboratory’s Materials Sciences Division and a professor of physics at the University of California at Berkeley, has used a scanning tunneling microscope (STM) to attach individual potassium atoms to isolated carbon-60 molecules.

By adding potassium atoms to familiar soccer-ball-shaped "buckyballs," Crommie and his coworkers can increase the electric charge on each C60 molecule; individual potassium atoms are either attached or removed from a C60 molecule using the tip of an STM. The method demonstrates that the electronic properties of an individual molecular structure can be reversibly tuned with atomic precision. The researchers report their work in the 12 March 2004 issue of the journal Science.


"Doping materials is a fundamental component of the entire modern electronics industry," Crommie says, referring to the process of adding impurities like phosphorus or boron to semiconductors like silicon to give the doped material an excess of negatively charged electrons or positively charged holes.

Junctions between n-type and p-type semiconductors are at the heart of the diodes, transistors, integrated circuits, computer chips, and other devices that make possible personal computers, cell phones, CD and DVD players, solar cells, and hundreds of other electronic gadgets. Doping bulk materials is well understood, says Crommie, "but we need to take these techniques and scale them all the way down to the single-molecule level."

At this level, one or two extra electrons’ worth of charge can affect the performance of critical electronic components. Building a molecular p-type/n-type junction might require electron doping of one molecule and hole doping of another. "With this work we’ve shown how to control the electron doping with absolute precision," Crommie says.

Crystals and monolayers of buckyballs and other fullerenes have long been doped by introducing metal atoms like potassium or rubidium. Crommie and his colleagues extended the process to the atomic level by depositing widely separated C60 molecules and potassium atoms on the surface of a silver crystal polished to virtually perfect flatness. The samples were prepared in ultrahigh vacuum and cooled in an STM to just seven degrees Kelvin above absolute zero.

In an STM a voltage bias between a fine probe, only a few atoms wide at its tip, and the surface of the sample being investigated causes an electric current to tunnel between them. The strength of the current yields information about the sample’s microscopic shape and electronic structure. And by bringing the tip close enough to attract individual atoms or molecules, they can be moved at will.

After depositing C60 molecules and potassium atoms on the silver surface, Crommie’s group mapped their positions, then used the STM’s tip to move the buckyballs over the potassium atoms, picking them up one at a time — like a molecular Pac-Man. In this way a buckyball could reliably be made to pick up from one to four potassium atoms. By then moving the buckyball over an impurity in the silver surface (most likely an oxygen atom), the potassium atoms could be "pulled off" one at a time.

The shape of an individual C60 molecule did not change significantly when potassium atoms were added: a buckyball with four potassium atoms was about nine percent wider and three percent shorter than an unadorned buckyball.

Electronic changes were more marked. The added charge donated by the potassium atoms caused the molecular orbital states of the C60 molecule to fill with electrons in a way analogous to the way the conduction band of a semiconductor fills with electrons when it is n-doped. Unlike the potassium-doping of C60 in extended monolayers and bulk crystals, however, where potassium atoms contribute one electron each, here each potassium atom contributed only about 0.6 of an electron’s charge to the individual buckyball.

These results suggest that the potassium atoms collect at the interface where the C60 molecule meets the silver surface, partially hiding from the STM’s probe and sharing part of their charge with the silver substrate.

Until now, controlling the electronic properties of molecular structures in the developing field of nanotechnology (a nanometer is one billionth of a meter) usually involved having chemists synthesize new starting materials in a test-tube or "gating" the structure — i.e., influencing the electronic environment with nearby electrodes. The new work offers a third way, with the major advantage of flexibility.

"If you want molecular structures to jump up and dance, the name of the game is control," says Crommie. "Tunability is the key to tailoring the electronic properties of individual molecules. We have demonstrated that we can do this in situ in a controllable, reversible way."

"Controlled Atomic Doping of a Single C60 Molecule," by Ryan Yamachika, Michael Grobis, Andre Wachowiak, and Michael F. Crommie, appears in the 12 March 2004 issue of Science.

The Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at http://www.lbl.gov.

Paul Preuss | LBNL
Further information:
http://www.lbl.gov/Science-Articles/Archive/MSD-doping-buckyballs.html
http://www.physics.berkeley.edu/research/crommie/index.html

More articles from Materials Sciences:

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

nachricht Missing atoms in a forgotten crystal bring luminescence
11.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>