Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon enhances Quantum Dot Corp. technology for long-term, live-animal imaging

19.01.2004


By modifying the surface of tiny, fluorescent crystals called quantum dots, Carnegie Mellon University scientists have enabled them to circulate for hours in animals and to provide fluorescent signals for at least eight months, the longest that anyone has observed quantum dot fluorescence in a living animal. This technological feat overcomes a major limitation, making quantum dots finally practical for long-term studies in mammals.



Reporting in the January/February issue of Bioconjugate Chemistry, Byron Ballou and colleagues at Carnegie Mellon, in collaboration with the Quantum Dot Corporation, found that the company’s quantum dots (Qdot® Particles) coated with an amphiphilic polyacrylic acid polymer are stable in vivo. A member of the team, Lauren Ernst, also found that modifying the surface molecules by adding a second polymer coat prolongs the time quantum dots circulate in the body.

"Because uncoated quantum dots are too fragile for most biological studies in vivo, the coating is the most critical step," explained Ballou, research scientist at the Molecular Biosensor and Imaging Center (MBIC) at Carnegie Mellon’s Mellon College of Science. "The new coatings allowed us to observe quantum dots much longer than previously demonstrated. We had concerns that the coats might dissolve or be digested away, so we were pleased with the long persistence of fluorescence, as well as the large increase in circulating time caused by increasing the thickness of the outer polymer coat." Both these features enabled the quantum dots to deposit effectively within tissues, Ballou noted.


First commercialized by the Quantum Dot Corporation in 2002, Qdot Particles are nanosized crystalline particles composed of a few hundred to a few thousand atoms of a semiconductor material (typically cadmium selenide). Quantum dots emit light in a variety of colors, depending on size. Unlike traditional fluorescent markers used in research and medicine, quantum dots are very bright, do not bleach under intense illumination and, when properly coated by a proprietary method invented by scientists at Quantum Dot Corporation, keep their fluorescence for long periods of time.

Marcel Bruchez, principal scientist at the Quantum Dot Corporation, collaborated on the project. Other collaborators at MBIC include Christopher Lagerholm and Alan Waggoner.

"Our findings are a promising step toward using quantum dots for non-invasive imaging in humans to monitor and treat diseases such as cancer," said Ballou. "Using our modified quantum dots, we were able to non-invasively image structures in living mice by fluorescence, then prove that the quantum dots were present by electron microscopy. No other fluorescent label lets you verify its exact location on scales from the whole animal to molecular dimensions."

Scientists also could modify the surface of these long-lived quantum dots by attaching both biological and non-biological molecules, thereby altering the properties of quantum dots to accomplish a specific goal, noted Ballou. By attaching molecules to the surface of quantum dots, one could target tumors to image them more effectively and allow surgeons to remove cancers with greater accuracy, according to Ballou. "Before these applications can happen, quantum dots must first be modified so that they remain in circulation long enough, and we must ensure that quantum dots cause no toxicity in healthy cells," he said.

To increase the time quantum dots remained circulating in live animals, the researchers coated their surfaces with one of three polyethylene glycol amine (PEG) molecules of varying lengths. They then monitored the circulating lifetimes of each quantum dot variant using non-invasive imaging techniques. While the paper reports initial success at visualizing the quantum dots over four months, the long-term experiment is still continuing, and Ballou has demonstrated that the PEG-coupled Qdot Particles have remained fluorescent for eight months.

In the animals, the modified quantum dots remain localized primarily in the liver, spleen, lymph nodes and bone marrow. These locations have a high concentration of phagocytes, immune cells that remove circulating debris inside the body. This finding strongly suggests that quantum dots were collected by phagocytic cells, according to the scientists. Because quantum dots accumulate in these areas, they could potentially be useful for defining some tumor types and for detecting sentinel lymph nodes, according to Ballou. (A sentinel lymph node is the first lymph node to which a cancer spreads.)

The Carnegie Mellon researchers plan to extend their research by targeting quantum dots to cells other than phagocytes. They also hope to modify quantum dots using biological molecules that could create in situ biosensors to report the presence of specific compounds that signal cellular responses inside the body. For instance, these modified quantum dots could potentially report how a tumor is responding to therapy.

MBIC is recognized worldwide for its work in revolutionizing light microscopy and fluorescent probes for live cell imaging. The center’s current focus involves the development of instrumentation and chemistry systems for biological research and medicine.


Founded in 1998, Quantum Dot Corporation (QDC) and its advisors are the world’s leading experts in semiconductor nanocrystal (Qdot®) technology and its application in biology. QDC markets and sells Qdot nanocrystal products worldwide, directly and through distributors. QDC has a dominant and extensive patent position covering quantum dot compositions, synthesis methods and methods of use. QDC is the exclusive licensee of quantum dot technology, in the field of biological applications, of pioneering intellectual property licensed from the University of California, MIT, Indiana University and the University of Melbourne. The research was funded by the National Institutes of Health.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>