Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New memory device could offer smaller, simpler way to archive data

13.11.2003


Discovery of new property in commonly used plastic leads to invention



Engineers at Princeton University and Hewlett-Packard have invented a combination of materials that could lead to cheap and super-compact electronic memory devices for archiving digital images or other data.

The invention could result in a single-use memory card that permanently stores data and is faster and easier to use than a compact disk. The device could be very small because it would not involve moving parts such as the laser and motor drive required by CDs.


The researchers, who published a description of the device in the Nov. 13 issue of Nature, achieved the result by discovering a previously unrecognized property of a commonly used conductive polymer plastic coating. Their memory device combines this polymer, which is inexpensive and easy to produce, with very thin-film, silicon-based electronics.

"We are hybridizing," said Princeton professor of electrical engineering Stephen Forrest, who led the research group. "We are making a device that is organic (the plastic polymer) and inorganic (the thin-film silicon) at the same time."

As a result, the device would be like a CD in that writing data onto it makes permanent physical changes in the plastic and can be done only once. But it also would be like a conventional electronic memory chip because it would plug directly into an electronic circuit and would have no moving parts. "The device could probably be made cheaply enough that one-time use would be the best way to go," Forrest said.

The research was done in Forrest’s lab by former postdoctoral researcher Sven Möller, who is now at HP in Corvallis, Ore. Craig Perlov, Warren Jackson and Carl Taussig, scientists at HP Labs in Palo Alto, Calif., are also co-authors of the Nature paper.

Möller made the basic discovery behind the device by experimenting with polymer material called PEDOT, which is clear and conducts electricity. It has been used for years as an antistatic coating on photographic film, and more recently as an electrical contact on video displays that require light to pass through the circuitry. Möller found that PEDOT conducts electricity at low voltages, but permanently loses its conductivity when exposed to higher voltages (and thus higher currents), making it act like a fuse or circuit breaker.

This finding led the researchers to use PEDOT as a way of storing digital information. Digital images and all computerized data are stored as numbers that are written as long strings of ones and zeroes. A PEDOT-based memory device would have a grid of circuits in which all the connections contain a PEDOT fuse. A high voltage could be applied to any of the contact points, blowing that particular fuse and leaving a mix of working and non-working circuits. These open or closed connections would represent zeros and ones and would become permanently encoded in the device. A blown fuse would block current and be read as a zero, while an unblown one would let current pass and act as a one.

This grid of memory circuits could be made so small that, based on the test junctions the researchers made, 1 million bits of information could fit in a square millimeter of paper-thin material. If formed as a block, the device could store more than one gigabyte of information, or about 1,000 high-quality images, in one cubic centimeter, which is about the size of a fingertip.

Developing the invention into a commercially viable product would require additional work on creating a large-scale manufacturing process and ensuring compatibility with existing electronic hardware, a process that might take as little as five years, Forrest said.

Research that combines expertise on both "hard" and "soft" materials, such as the silicon and polymer materials in Forrest’s memory device, represents a major strength at Princeton and is the focus of the newly established Princeton Institute for the Science and Technology of Materials. The institute includes scientists and engineers from a wide range of disciplines and seeks to combine basic science and commercial partnerships.

Funding for Forrest’s research came in part from HP as well as from the National Science Foundation through a long-term grant that funds a Materials Research Science and Engineering Center at Princeton. Princeton University has filed for a patent on the invention. HP has an option to license rights to the technology.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>