Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New memory device could offer smaller, simpler way to archive data

13.11.2003


Discovery of new property in commonly used plastic leads to invention



Engineers at Princeton University and Hewlett-Packard have invented a combination of materials that could lead to cheap and super-compact electronic memory devices for archiving digital images or other data.

The invention could result in a single-use memory card that permanently stores data and is faster and easier to use than a compact disk. The device could be very small because it would not involve moving parts such as the laser and motor drive required by CDs.


The researchers, who published a description of the device in the Nov. 13 issue of Nature, achieved the result by discovering a previously unrecognized property of a commonly used conductive polymer plastic coating. Their memory device combines this polymer, which is inexpensive and easy to produce, with very thin-film, silicon-based electronics.

"We are hybridizing," said Princeton professor of electrical engineering Stephen Forrest, who led the research group. "We are making a device that is organic (the plastic polymer) and inorganic (the thin-film silicon) at the same time."

As a result, the device would be like a CD in that writing data onto it makes permanent physical changes in the plastic and can be done only once. But it also would be like a conventional electronic memory chip because it would plug directly into an electronic circuit and would have no moving parts. "The device could probably be made cheaply enough that one-time use would be the best way to go," Forrest said.

The research was done in Forrest’s lab by former postdoctoral researcher Sven Möller, who is now at HP in Corvallis, Ore. Craig Perlov, Warren Jackson and Carl Taussig, scientists at HP Labs in Palo Alto, Calif., are also co-authors of the Nature paper.

Möller made the basic discovery behind the device by experimenting with polymer material called PEDOT, which is clear and conducts electricity. It has been used for years as an antistatic coating on photographic film, and more recently as an electrical contact on video displays that require light to pass through the circuitry. Möller found that PEDOT conducts electricity at low voltages, but permanently loses its conductivity when exposed to higher voltages (and thus higher currents), making it act like a fuse or circuit breaker.

This finding led the researchers to use PEDOT as a way of storing digital information. Digital images and all computerized data are stored as numbers that are written as long strings of ones and zeroes. A PEDOT-based memory device would have a grid of circuits in which all the connections contain a PEDOT fuse. A high voltage could be applied to any of the contact points, blowing that particular fuse and leaving a mix of working and non-working circuits. These open or closed connections would represent zeros and ones and would become permanently encoded in the device. A blown fuse would block current and be read as a zero, while an unblown one would let current pass and act as a one.

This grid of memory circuits could be made so small that, based on the test junctions the researchers made, 1 million bits of information could fit in a square millimeter of paper-thin material. If formed as a block, the device could store more than one gigabyte of information, or about 1,000 high-quality images, in one cubic centimeter, which is about the size of a fingertip.

Developing the invention into a commercially viable product would require additional work on creating a large-scale manufacturing process and ensuring compatibility with existing electronic hardware, a process that might take as little as five years, Forrest said.

Research that combines expertise on both "hard" and "soft" materials, such as the silicon and polymer materials in Forrest’s memory device, represents a major strength at Princeton and is the focus of the newly established Princeton Institute for the Science and Technology of Materials. The institute includes scientists and engineers from a wide range of disciplines and seeks to combine basic science and commercial partnerships.

Funding for Forrest’s research came in part from HP as well as from the National Science Foundation through a long-term grant that funds a Materials Research Science and Engineering Center at Princeton. Princeton University has filed for a patent on the invention. HP has an option to license rights to the technology.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>