Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New memory device could offer smaller, simpler way to archive data

13.11.2003


Discovery of new property in commonly used plastic leads to invention



Engineers at Princeton University and Hewlett-Packard have invented a combination of materials that could lead to cheap and super-compact electronic memory devices for archiving digital images or other data.

The invention could result in a single-use memory card that permanently stores data and is faster and easier to use than a compact disk. The device could be very small because it would not involve moving parts such as the laser and motor drive required by CDs.


The researchers, who published a description of the device in the Nov. 13 issue of Nature, achieved the result by discovering a previously unrecognized property of a commonly used conductive polymer plastic coating. Their memory device combines this polymer, which is inexpensive and easy to produce, with very thin-film, silicon-based electronics.

"We are hybridizing," said Princeton professor of electrical engineering Stephen Forrest, who led the research group. "We are making a device that is organic (the plastic polymer) and inorganic (the thin-film silicon) at the same time."

As a result, the device would be like a CD in that writing data onto it makes permanent physical changes in the plastic and can be done only once. But it also would be like a conventional electronic memory chip because it would plug directly into an electronic circuit and would have no moving parts. "The device could probably be made cheaply enough that one-time use would be the best way to go," Forrest said.

The research was done in Forrest’s lab by former postdoctoral researcher Sven Möller, who is now at HP in Corvallis, Ore. Craig Perlov, Warren Jackson and Carl Taussig, scientists at HP Labs in Palo Alto, Calif., are also co-authors of the Nature paper.

Möller made the basic discovery behind the device by experimenting with polymer material called PEDOT, which is clear and conducts electricity. It has been used for years as an antistatic coating on photographic film, and more recently as an electrical contact on video displays that require light to pass through the circuitry. Möller found that PEDOT conducts electricity at low voltages, but permanently loses its conductivity when exposed to higher voltages (and thus higher currents), making it act like a fuse or circuit breaker.

This finding led the researchers to use PEDOT as a way of storing digital information. Digital images and all computerized data are stored as numbers that are written as long strings of ones and zeroes. A PEDOT-based memory device would have a grid of circuits in which all the connections contain a PEDOT fuse. A high voltage could be applied to any of the contact points, blowing that particular fuse and leaving a mix of working and non-working circuits. These open or closed connections would represent zeros and ones and would become permanently encoded in the device. A blown fuse would block current and be read as a zero, while an unblown one would let current pass and act as a one.

This grid of memory circuits could be made so small that, based on the test junctions the researchers made, 1 million bits of information could fit in a square millimeter of paper-thin material. If formed as a block, the device could store more than one gigabyte of information, or about 1,000 high-quality images, in one cubic centimeter, which is about the size of a fingertip.

Developing the invention into a commercially viable product would require additional work on creating a large-scale manufacturing process and ensuring compatibility with existing electronic hardware, a process that might take as little as five years, Forrest said.

Research that combines expertise on both "hard" and "soft" materials, such as the silicon and polymer materials in Forrest’s memory device, represents a major strength at Princeton and is the focus of the newly established Princeton Institute for the Science and Technology of Materials. The institute includes scientists and engineers from a wide range of disciplines and seeks to combine basic science and commercial partnerships.

Funding for Forrest’s research came in part from HP as well as from the National Science Foundation through a long-term grant that funds a Materials Research Science and Engineering Center at Princeton. Princeton University has filed for a patent on the invention. HP has an option to license rights to the technology.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Materials Sciences:

nachricht Game-changing finding pushes 3D-printing to the molecular limit
20.06.2018 | University of Nottingham

nachricht Creating a new composite fuel for new-generation fast reactors
20.06.2018 | Lobachevsky University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>