Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process developed for solvent-free acrylic fiber and cheap, fast carbon fibers

10.09.2003


Carbon-fiber reinforced polymer matrix composite materials are strong without being brittle and retain their integrity over a wide temperature range while being impervious to most environments. While the materials’ qualities make them important to the aerospace industry, present processing technology makes carbon fiber too expensive for broader use, such as in the automotive industry.



Chemistry and chemical engineering researchers at Virginia Tech and Clemson University have been working for three years with funding from the U.S. Department of Energy to develop new ways to make cheaper, more environmentally friendly carbon-fiber precursor materials. The researchers have made a discovery that makes it possible to create the carbon fiber precursor materials without solvents and potentially to process them into carbon fibers more quickly and cheaply than can be done presently.

Members of the Materials Research Institute (MRI) at Virginia Tech will present their work at the 226th American Chemical Society (ACS) national meeting in New York City Sept. 7-11.


The usual first step in carbon fiber production is the creation of acrylic fibers. These fibers are heated for eight to 10 hours at 200 degrees C, and then at progressively higher temperatures, to produce carbon fibers. Presently, acrylic fibers are spun in solution. "We have developed an acrylic fiber that can be spun from the melt – from 100 percent solids without solvents," says James McGrath, MRI director.

In addition, the researchers have added a molecular component to the acrylic fiber that reacts with ultraviolet (UV) light. "It’s expensive to process material for 10 plus hours at very high temperatures. We think we can cut that to one or two hours as a result of including the photocrosslinkable group," says McGrath.

The process needs to be scaled up from the successful laboratory results, he says.

The paper, "Photocrosslinkable acrylonitrile terpolymers as carbon fiber precursors" (Poly 244) will be presented Tuesday, Sept. 9, at 9:30 a.m. in the New York Hilton Sutton North room. It is the first presentation on the synthesis of acrylic fibers with a photo-sensitive monomer. Authors of this paper are MRI post-doctoral associates Thekkekara Mukundan and Vinayak A. Bhanu, chemistry Ph.D. student Kent Wiles, chemical engineering Ph.D. student Michael Bortner, and professors D.G. Baird of chemical engineer and McGrath of chemistry, all at Virginia Tech. Research colleagues from Clemson are chemical engineering professors Dan Edie and Amod Ogale and their students.


Contact for more information:

Dr. James McGrath, 540-231-5976, jmcgrath@vt.edu
Dr. Donald Baird, 540-231-5998, dbaird@vt.edu
Dr. Mukundan, tmukunda@vt.edu

PR CONTACT:
Susan Trulove, 540 231-5646, STrulove@vt.edu
Researcher: James McGrath, 540-231-5976, jmcgrath@vt.edu.

Laurie Good | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>