Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process developed for solvent-free acrylic fiber and cheap, fast carbon fibers

10.09.2003


Carbon-fiber reinforced polymer matrix composite materials are strong without being brittle and retain their integrity over a wide temperature range while being impervious to most environments. While the materials’ qualities make them important to the aerospace industry, present processing technology makes carbon fiber too expensive for broader use, such as in the automotive industry.



Chemistry and chemical engineering researchers at Virginia Tech and Clemson University have been working for three years with funding from the U.S. Department of Energy to develop new ways to make cheaper, more environmentally friendly carbon-fiber precursor materials. The researchers have made a discovery that makes it possible to create the carbon fiber precursor materials without solvents and potentially to process them into carbon fibers more quickly and cheaply than can be done presently.

Members of the Materials Research Institute (MRI) at Virginia Tech will present their work at the 226th American Chemical Society (ACS) national meeting in New York City Sept. 7-11.


The usual first step in carbon fiber production is the creation of acrylic fibers. These fibers are heated for eight to 10 hours at 200 degrees C, and then at progressively higher temperatures, to produce carbon fibers. Presently, acrylic fibers are spun in solution. "We have developed an acrylic fiber that can be spun from the melt – from 100 percent solids without solvents," says James McGrath, MRI director.

In addition, the researchers have added a molecular component to the acrylic fiber that reacts with ultraviolet (UV) light. "It’s expensive to process material for 10 plus hours at very high temperatures. We think we can cut that to one or two hours as a result of including the photocrosslinkable group," says McGrath.

The process needs to be scaled up from the successful laboratory results, he says.

The paper, "Photocrosslinkable acrylonitrile terpolymers as carbon fiber precursors" (Poly 244) will be presented Tuesday, Sept. 9, at 9:30 a.m. in the New York Hilton Sutton North room. It is the first presentation on the synthesis of acrylic fibers with a photo-sensitive monomer. Authors of this paper are MRI post-doctoral associates Thekkekara Mukundan and Vinayak A. Bhanu, chemistry Ph.D. student Kent Wiles, chemical engineering Ph.D. student Michael Bortner, and professors D.G. Baird of chemical engineer and McGrath of chemistry, all at Virginia Tech. Research colleagues from Clemson are chemical engineering professors Dan Edie and Amod Ogale and their students.


Contact for more information:

Dr. James McGrath, 540-231-5976, jmcgrath@vt.edu
Dr. Donald Baird, 540-231-5998, dbaird@vt.edu
Dr. Mukundan, tmukunda@vt.edu

PR CONTACT:
Susan Trulove, 540 231-5646, STrulove@vt.edu
Researcher: James McGrath, 540-231-5976, jmcgrath@vt.edu.

Laurie Good | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Materials Sciences:

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

nachricht Here's a tip: Indented cement shows unique properties
20.07.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>