Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process developed for solvent-free acrylic fiber and cheap, fast carbon fibers

10.09.2003


Carbon-fiber reinforced polymer matrix composite materials are strong without being brittle and retain their integrity over a wide temperature range while being impervious to most environments. While the materials’ qualities make them important to the aerospace industry, present processing technology makes carbon fiber too expensive for broader use, such as in the automotive industry.



Chemistry and chemical engineering researchers at Virginia Tech and Clemson University have been working for three years with funding from the U.S. Department of Energy to develop new ways to make cheaper, more environmentally friendly carbon-fiber precursor materials. The researchers have made a discovery that makes it possible to create the carbon fiber precursor materials without solvents and potentially to process them into carbon fibers more quickly and cheaply than can be done presently.

Members of the Materials Research Institute (MRI) at Virginia Tech will present their work at the 226th American Chemical Society (ACS) national meeting in New York City Sept. 7-11.


The usual first step in carbon fiber production is the creation of acrylic fibers. These fibers are heated for eight to 10 hours at 200 degrees C, and then at progressively higher temperatures, to produce carbon fibers. Presently, acrylic fibers are spun in solution. "We have developed an acrylic fiber that can be spun from the melt – from 100 percent solids without solvents," says James McGrath, MRI director.

In addition, the researchers have added a molecular component to the acrylic fiber that reacts with ultraviolet (UV) light. "It’s expensive to process material for 10 plus hours at very high temperatures. We think we can cut that to one or two hours as a result of including the photocrosslinkable group," says McGrath.

The process needs to be scaled up from the successful laboratory results, he says.

The paper, "Photocrosslinkable acrylonitrile terpolymers as carbon fiber precursors" (Poly 244) will be presented Tuesday, Sept. 9, at 9:30 a.m. in the New York Hilton Sutton North room. It is the first presentation on the synthesis of acrylic fibers with a photo-sensitive monomer. Authors of this paper are MRI post-doctoral associates Thekkekara Mukundan and Vinayak A. Bhanu, chemistry Ph.D. student Kent Wiles, chemical engineering Ph.D. student Michael Bortner, and professors D.G. Baird of chemical engineer and McGrath of chemistry, all at Virginia Tech. Research colleagues from Clemson are chemical engineering professors Dan Edie and Amod Ogale and their students.


Contact for more information:

Dr. James McGrath, 540-231-5976, jmcgrath@vt.edu
Dr. Donald Baird, 540-231-5998, dbaird@vt.edu
Dr. Mukundan, tmukunda@vt.edu

PR CONTACT:
Susan Trulove, 540 231-5646, STrulove@vt.edu
Researcher: James McGrath, 540-231-5976, jmcgrath@vt.edu.

Laurie Good | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>