Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wood to replace oil in building polymers

12.06.2003


A new type of polymers can be produced in a more environmentally friendly way, using wood instead of oil as a raw material, according to research at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The next step is to replace the wood with the process water from the pulp industry. This means a solution to an environmental problem and access to a cheap renewable raw material.



The substances in question, hemicellulose-based hydrogels, are a good example of how oil can be replaced by other raw materials in the production of polymers, an ever more important step in efforts to create a sustainable society. The new possibilities of producing hydrogels and other polymers from wood and process water from the pulp industry have whetted the interest of the forestry industry in pursuing this research further, according to Margaretha Söderqvist Lindblad, who has presented a doctoral dissertation based on this research. Since hemicellulose is soluble both in water and certain mild organic solvents, production can furthermore be more environmentally friendly than parts of the corresponding processes using oil as raw material.

“Older techniques for isolating hemicellulose yield water-insoluble hemicellulose, which is considerably more difficult to alter chemically. So on top of the fact that the raw material is to be preferred in our endeavor to create a sustainable society, the ensuing reactions are also easy on the environment,” says Margareth Söderqvist Lindblad. This is entirely in line with the efforts to find environmentally adapted solutions that permeate all research at the new interdisciplinary Department of Fiber and Polymer Technology at KTH. Professor Ann-Christine Albertsson, who directed the dissertation, began work on developing polymers from renewable raw materials as early as the mid 1980s.


The chemical structure of hemicellulose also opens great potential for developing hydrogels with varying characteristics. One application is in systems for releasing drugs and fertilizing substances. The explanation lies in the structure of the hydrogels. Their atoms are arranged in a network structure, which means that they swell in water without dissolving. One effect will be that substances placed inside the network structure will remain there and can be more evenly distributed in water solutions.

“In systems for drug release the active substance can be placed inside the network structure and thereby be more evenly distributed over time. On a larger scale the same principle can be used in agriculture to distribute fertilizer substances more evenly and thereby decrease the risk of eutrophication of our waters,” says Margaretha Söderqvist Lindblad. The research behind the dissertation has also dealt with how renewable resources can be utilized in building polymers by fermenting agricultural products like rapeseed oil and starch monomers (building blocks) for other polymers.

Magnus Myrén | alfa
Further information:
http://www.kth.se

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>