Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wood to replace oil in building polymers

12.06.2003


A new type of polymers can be produced in a more environmentally friendly way, using wood instead of oil as a raw material, according to research at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The next step is to replace the wood with the process water from the pulp industry. This means a solution to an environmental problem and access to a cheap renewable raw material.



The substances in question, hemicellulose-based hydrogels, are a good example of how oil can be replaced by other raw materials in the production of polymers, an ever more important step in efforts to create a sustainable society. The new possibilities of producing hydrogels and other polymers from wood and process water from the pulp industry have whetted the interest of the forestry industry in pursuing this research further, according to Margaretha Söderqvist Lindblad, who has presented a doctoral dissertation based on this research. Since hemicellulose is soluble both in water and certain mild organic solvents, production can furthermore be more environmentally friendly than parts of the corresponding processes using oil as raw material.

“Older techniques for isolating hemicellulose yield water-insoluble hemicellulose, which is considerably more difficult to alter chemically. So on top of the fact that the raw material is to be preferred in our endeavor to create a sustainable society, the ensuing reactions are also easy on the environment,” says Margareth Söderqvist Lindblad. This is entirely in line with the efforts to find environmentally adapted solutions that permeate all research at the new interdisciplinary Department of Fiber and Polymer Technology at KTH. Professor Ann-Christine Albertsson, who directed the dissertation, began work on developing polymers from renewable raw materials as early as the mid 1980s.


The chemical structure of hemicellulose also opens great potential for developing hydrogels with varying characteristics. One application is in systems for releasing drugs and fertilizing substances. The explanation lies in the structure of the hydrogels. Their atoms are arranged in a network structure, which means that they swell in water without dissolving. One effect will be that substances placed inside the network structure will remain there and can be more evenly distributed in water solutions.

“In systems for drug release the active substance can be placed inside the network structure and thereby be more evenly distributed over time. On a larger scale the same principle can be used in agriculture to distribute fertilizer substances more evenly and thereby decrease the risk of eutrophication of our waters,” says Margaretha Söderqvist Lindblad. The research behind the dissertation has also dealt with how renewable resources can be utilized in building polymers by fermenting agricultural products like rapeseed oil and starch monomers (building blocks) for other polymers.

Magnus Myrén | alfa
Further information:
http://www.kth.se

More articles from Materials Sciences:

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>