Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wood to replace oil in building polymers

12.06.2003


A new type of polymers can be produced in a more environmentally friendly way, using wood instead of oil as a raw material, according to research at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The next step is to replace the wood with the process water from the pulp industry. This means a solution to an environmental problem and access to a cheap renewable raw material.



The substances in question, hemicellulose-based hydrogels, are a good example of how oil can be replaced by other raw materials in the production of polymers, an ever more important step in efforts to create a sustainable society. The new possibilities of producing hydrogels and other polymers from wood and process water from the pulp industry have whetted the interest of the forestry industry in pursuing this research further, according to Margaretha Söderqvist Lindblad, who has presented a doctoral dissertation based on this research. Since hemicellulose is soluble both in water and certain mild organic solvents, production can furthermore be more environmentally friendly than parts of the corresponding processes using oil as raw material.

“Older techniques for isolating hemicellulose yield water-insoluble hemicellulose, which is considerably more difficult to alter chemically. So on top of the fact that the raw material is to be preferred in our endeavor to create a sustainable society, the ensuing reactions are also easy on the environment,” says Margareth Söderqvist Lindblad. This is entirely in line with the efforts to find environmentally adapted solutions that permeate all research at the new interdisciplinary Department of Fiber and Polymer Technology at KTH. Professor Ann-Christine Albertsson, who directed the dissertation, began work on developing polymers from renewable raw materials as early as the mid 1980s.


The chemical structure of hemicellulose also opens great potential for developing hydrogels with varying characteristics. One application is in systems for releasing drugs and fertilizing substances. The explanation lies in the structure of the hydrogels. Their atoms are arranged in a network structure, which means that they swell in water without dissolving. One effect will be that substances placed inside the network structure will remain there and can be more evenly distributed in water solutions.

“In systems for drug release the active substance can be placed inside the network structure and thereby be more evenly distributed over time. On a larger scale the same principle can be used in agriculture to distribute fertilizer substances more evenly and thereby decrease the risk of eutrophication of our waters,” says Margaretha Söderqvist Lindblad. The research behind the dissertation has also dealt with how renewable resources can be utilized in building polymers by fermenting agricultural products like rapeseed oil and starch monomers (building blocks) for other polymers.

Magnus Myrén | alfa
Further information:
http://www.kth.se

More articles from Materials Sciences:

nachricht Nagoya University researchers break down plastic waste
29.05.2017 | Nagoya University

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>