Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Singing Concrete

17.01.2003


Physicists from the St. Petersburg State Institute of Technology have invented an unusual method for improving concrete. The researchers believe that the concrete structure will become more uniform, and concrete products will obtain unprecedented durability and water-resistance if, while hardening, concrete is exposed to the influence of electromagnetic field of a strictly determined frequency.



The actual process is as follows: the concrete blocks while they are still in the mould are placed in a kind of metal barrel, which serves as an antenna or resonator. Short pulses of alternating current pass through it. The processing time (a few seconds) and parameters of the electromagnetic field created by the current are strictly determined. As a result, concrete becomes heterogeneous, and with higher quality.

The common problem for cement, concrete and other similar building materials is heterogeneity of structure. The heat inevitably evolved in the course of reaction between sand and cement is carried off slowly and non-uniformly, that is why concrete also hardens non-uniformly. Besides, while concrete is hardening the educed gases form pores and cavities in the body of the products, the pores and cavities being of different size. This results in insufficient durability, sometimes even brittleness of concrete blocks. These drawbacks can be avoided if concrete is stirred up, but this is practically impossible to do. The ’trick’ the Technical University researchers play with concrete resembles stirring to some extent.


When the concrete is exposed to short electromagnetic pulses, which are of low intensity but their parameters are established precisely, alternating currents appear in the thin surface layer of the concrete. Alternating currents, in turn, generate acoustic waves in the overall bulk of the concrete blocks. Figuratively speaking, concrete contained in the steel barrel ’is singing’ under the influence of electric field, but it is ’singing’ in an inaudible way, i.e. in ultrasonic range. This acoustic influence in particular is, in the researchers’ opinion, the regulating factor for the structure of the material.

It is still unclear whether the actual mechanism is like that. The capacity of ultrasound seems to be evidently insufficient to directly stir a large bulk of dense material. Nevertheless, the scientists assume that the moderate directive effect may cause a resonant response from the material, thus causing the structure regulation.

According to Alexei Kolesnikov, one of the inventors, "The process is similar to the railway switch operation - the effort even a child can cope with. However, this relatively minor effort directs to the required track a train weighting a thousand tons and possessing enormous energy."

The physicists have so far failed to prove their hypothesis theoretically, but facts are stubborn things. As a result of such simple processing invented by the scientists, concrete hardens quicker and the blocks made of concrete become more durable and dense. For instance, after undergoing such a ’singing lesson’, the concrete sleepers will be in use much longer and the bearing-wall buildings will not grow damp in cold and rainy weather.

Olga Maksimenko | informnauka

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>