Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles could aid biohazard detection, computer industry

12.12.2002


A micrograph image of gold nanoparticles form on germanium, an advanced semiconductor material. These tiny particles could create better connections between microchips and the much larger wires that lead to other computer components. (Graphic/Lon Porter)


Nanoparticles form gradually after a semiconductor is dipped into a solution of metal salt. The cycle progresses from a surface of bare germanium (at the 12 o’clock position) progressing clockwise to the same surface 500 minutes after immersion. The process occurs naturally, without the expensive equipment that is otherwise necessary to produce high-purity metals. (Graphic/Lon Porter)


Nanotechnology could make life easier for computer manufacturers and tougher for terrorists, reports a Purdue University research team.

A group led by Jillian Buriak has found a rapid and cost-effective method of forming tiny particles of high-purity metals on the surface of advanced semiconductor materials such as gallium arsenide. While the economic benefits alone of such a discovery would be good news to chip manufacturers, who face the problem of connecting increasingly tiny computer chips with macro-sized components, the group has taken their research a step further.

The scientists also have learned how to use these nanoparticles as a bridge to connect the chips with organic molecules. Biosensors based on this development could lead to advances in the war on terrorism.



"We have found a way to connect the interior of a computer with the biological world," said Buriak, associate professor of chemistry in Purdue’s School of Science. "It is possible that this discovery will enable chips similar to those found in computers to detect biohazards such as bacteria, nerve gas or other chemical agents."

The research, which appears in today’s (Wednesday, 12/11) issue of Nano Letters, sprang from the team’s desire to attach metals to semiconductors in precise locations.

Computer chips, commonly made of silicon, contain circuits that are far smaller than those made from metal wires. But for an impulse from a keyboard or mouse to reach the microchip, the electronic signal must pass from a large wire onto the chip’s surface. The delicate interface between the macro and micro world is often accomplished by a tiny connection made of gold, chosen frequently over alternatives such as copper or silver, because it does not corrode in air. Gold’s advantages have made it the first choice for designers, though until now such advantages have come at a steep economic price.

"Gold works great once you actually get it onto the chip," said Lon Porter, a chemistry graduate student in Buriak’s group. "But by traditional manufacturing methods you need to begin with expensive, very high-purity gold. With our method, however, you’d no longer need the high-quality gold you might find in coins in Fort Knox – you could use the low-purity gold waste swept up from the coin factory floor."

In their purest forms, precious metals such as gold and platinum are among the most coveted substances in the world. But these metals are more commonly found in nature as part of low-purity compounds like metal salts – which, despite their name, are not salts you would use to flavor food or make a snowy roadway safe for driving. The amount of precious metals in these salts is low to begin with; when the salts are dissolved in liquid at the concentration that Buriak’s group needs to form nanoparticles, a test tube full of the solution is worth only pennies. But despite the low market value of the chemical solutions themselves, the effect Buriak’s group has discovered may nonetheless prove to be a gold mine.

"All you need to do to form nanoparticles is dip the semiconductor into the solution and wait," Porter said. "Though you begin with a solution worth less than the change in your pocket, you still end up with a layer of gold nanoparticles on the silicon that has the same purity as gold bullion. Because the reaction sustains itself, manufacturers would not need any special training or equipment to use it. From both a manpower and a technical perspective, the process is a real money saver."

The particles grow larger with increased time in the solution and eventually cover the semiconductor base with a bumpy coating. The roughness of the coating gives the base a greater surface area than it had by itself, a realization which led to the team’s second breakthrough.

"It’s similar to the way your brain packs a lot of surface area into the limited space inside your skull by folding in on itself many times," Porter said. "But the advantage we found for computer chips is not that we can increase their ’thinking power,’ per se. Rather, the resulting rough surface gives us a lot of nooks and crannies in which to secure a second group of molecules atop the gold – organic molecules that react in the presence of other chemicals."

The upshot of this double-layering is that the organic molecules could be chosen for their ability to react to the presence of nerve gas or biological contaminants. If a dangerous chemical reacted with an organic molecule, the metal nanoparticles could convey a signal downward to the chip that a biohazard was present.

"When a chemical reaction takes place, a small but measurable electrical change takes place," Porter said. "As metals are excellent conductors of electricity, nanoparticles could be the bridge that we need to make computers interface with the biological world."

Further refinement of their techniques has allowed the group to deposit nanoparticles of gold, platinum and other metals in specific areas of the semiconductor’s surface. Rather than a film that blankets the entire surface, the group can deposit the particles in a grid pattern or even draw lines with a microscopic "pen." These refinements could allow manufacturers to put their discoveries to use comparatively rapidly.

"We are not sure what application of our discoveries will appear first," Buriak said. "But there are many semiconductor companies out there that spend a lot of money on chip interfacing, and we expect they could all take advantage of this technique somehow."

This research was funded in part by the National Science Foundation.

Buriak’s group is affiliated with Purdue’s new Birck Nanotechnology Center, scheduled for completion in the fall of 2004. A dozen groups associated with the center are pursuing research topics such as microscopic machines, advanced materials and artificial organs.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: Jillian M. Buriak, (765) 494-5302, buriak@purdue.edu

Lon A. Porter Jr., (765) 496-3491, porterjr@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu



Electroless Nanoparticle Film Deposition Compatible with Photolithography, Microcontact Printing, and Dip-Pen Nanolithography Patterning Technologies

By Lon A. Porter, Jr., Hee Cheul Choi, J. M. Schmeltzer, Alexander E. Ribbe, Lindsay C. C. Elliott,
and Jillian M. Buriak*

Nanoparticles of Au, Pd and Pt form spontaneously as thin, morphologically complex metallic films upon various semiconducting or metal substrates such as Ge(100), Cu, Zn, and Sn, via galvanic displacement from aqueous metal salt solutions. Patterning of these high surface area metal films into ordered structures utilizing photolithography, microcontact printing (-CP), and dip-pen nanolithography (DPN) is demonstrated on flat Ge(100), and (for -CP) on rough Zn foil.

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/021211.Buriak.nanoparticle.html
http://www.purdue.edu/
http://www.chem.purdue.edu/buriak

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>