Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering researchers demystify fatigue failure in polysilicon used in MEMS devices

11.11.2002


The success of many advanced technologies that use devices such as sensors and actuators, including gyroscopes and optical devices, depends on microscopic components called microelectromechanical systems (MEMS) devices made of polycrystalline silicon (polysilicon). Researchers at Case Western Reserve University report in the November 8 issue of Science that miniature micron-sized polysilicon laboratory specimens subjected to cyclic tension/compression loading undergo fatigue, and could ultimately fail as a result of damage produced by the compressive cycles, rather than from moisture-assisted stress corrosion cracking. This information, they say, could assist MEMS developers to mitigate fatigue failure in MEMS devices that experience significant mechanical stress during operation.

The Science article ("Fatigue Failure in Polysilicon: It’s Not Due to Simple Stress Corrosion Cracking") was written by Harold Kahn, Research Associate Professor in the department of materials science and engineering; Roberto Ballarini, Professor in the department of civil engineering and a lead researcher on the project; Arthur Heuer, University Professor and Kyocera Professor of Ceramics in the department of materials science and engineering; and Justin Bellante, a recent BS/MS graduate of materials science and engineering.

Polysilicon, CWRU researchers say, is a manufactured thin film consisting of silicon crystallites that is made in a microfabrication laboratory using chemical vapor deposition. The films are associated with rough surfaces that result from the plasma etching used in the final stages of MEMS processing. The researchers speculate that under compressive loading, these surfaces come into contact, and their wedging action produces microcracks that grow during subsequent tension and compression cycles.



"Over the past few years there has been a debate about the roles that moisture and mechanical stress play in the fatigue failure of polysilicon devices," said Ballarini. "Some research groups claim that polysilicon fatigue is associated with stress corrosion cracking. This failure mechanism is associated with the propagation of a sharp crack under an applied stress too low for immediate catastrophic failure and in the presence of a corrosive environment like humid air. Our research shows that polysilicon under constant stress is not susceptible to stress corrosion, but the fatigue strength is strongly influenced by the ratio of compression to tension stresses experienced during each cycle. The failure originates from microcracks and those cracks likely originate on the surface of the polysilicon."

Polysilicon MEMS structures, Heuer explained, contain many raised areas along their surfaces that act as stress concentrators and could result in microcracks when exposed to tensile or compressive stresses. "The microcracks then extend from the surface into the miniaturized structures, weakening the material and causing failure," he said.

To study the fatigue of polysilicon, Kahn and Bellante used on-chip test structures that rely on electrostatic actuation (the attraction to each other of two plates of opposite electrical charge), rather than an external testing machine.

"By using both DC and AC voltage sources," Kahn said, "we varied the ratio of compressive to tensile stresses in the cycle, and by using high frequencies, we could subject specimens to more than a billion cycles in less than a day."

"MEMS, the use of miniaturized devices for high tech products, is becoming more and more popular in modern technology," said Heuer. "This research tells us to be mindful of the manner in which we create the surfaces of polysilicon chips so that devices that experience significant mechanical stresses like gyroscopes and optical devices can be rendered less susceptible to fatigue failure."

Marci E. Hersh | EurekAlert!
Further information:
http://www.cwru.edu/

More articles from Materials Sciences:

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>