Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better metal forming: magnetic pulses “bump” metal into shape

10.10.2002


Glenn S. Daehn


Graduate student Jianhui Shang holds two pans stamped from automotive grade aluminum. The pan on the right was stamped using traditional techniques. The one on the left was stamped using the same equipment, but employing Daehn’s electromagnetic bump forming technique.


A process developed at Ohio State University for shaping metal parts using magnetism has reached a new milestone -- one that may cut manufacturing costs and help preserve the environment.

The process could also expand manufacturers’ choice of available metals, and enable the use of aluminum parts in lighter, fuel-efficient automobiles.

Glenn S. Daehn, professor of materials science and engineering, and his colleagues pioneered hybrid electromagnetic metal forming in 1999, while collaborating with the “Big Three” automakers. With this process, a traditional tool and die stamps the general shape of a part out of sheet metal. Afterward, a magnetic field pushes at specific locations of the sheet metal to form fine details or complex shapes.



Now the Ohio State engineers have discovered that they can improve the process if they use the magnetic field to stretch certain portions of the metal during the stamping operation.

In tests, they were able to create an aluminum pan with a depth nearly 1.5 times greater than previously possible, and they did so without relying upon the potentially toxic industrial lubricants normally required for stamping.

Daehn described the improved process Oct. 9 in Columbus, OH, at the annual meeting of the Minerals, Metals, and Materials Society, now known as TMS.

Daehn calls the process “bump forming,” because the magnetic field bumps against the metal in many short pulses -- typically 5 to 20 times in less than one second -- while the metal moves into the die.

Normally, as a sheet of metal bends to fit inside a tool and die, some parts of the sheet stretch more than others. These are the parts that may tear if the metal stretches too much.

With Daehn’s technique, electromagnetic fields work against the parts of the sheet that would not normally stretch, causing them to bow out. With this extra amount of “give” in the metal, other portions of the sheet will be less likely to tear.

The process works well in electrically conductive metals, including aluminum. When exposed to a strong electro-magnetic field from a coil inside the punch portion of the stamping tool, a corresponding electrical current and electromagnetic field form inside the metal. The field in the coil and the field in the metal repel each other, pushing the aluminum away from the punch.

Bump forming could be very useful in mass production, Daehn said. From the auto industry to aerospace and electronics, large manufacturing operations often need to stamp as many as 10 million copies of their metal components per year.

“The process has to be reliable, and require as little human intervention as possible,” Daehn said. “In automobile production especially, manufactures need to make parts in as few steps as they possibly can. I think we can do a lot of good things for industry with this technique.”

Daehn and Ohio State postdoctoral researcher Vincent J. Vohnout developed their bump forming technique with Ishikawajima-Harima Heavy Industries Co., Ltd., one of the largest manufacturing companies in Japan.

Using automotive-grade aluminum, the engineers stamped out a shape similar to a baking pan. Because aluminum tears easily, manufacturers typically need to coat the metal with lubricant in order to stamp it, Daehn explained. The potentially hazardous liquid is then washed from the metal and disposed of, at a significant cost.

With conventional stamping equipment and lubricant, the deepest pan they could create without tearing the aluminum was 1.7 inches (4.4 centimeters). After placing electromagnetic actuators in the same equipment and using the bump forming procedure, they were able to stamp a pan 2.5 inches (6.4 centimeters) deep -- a 47 percent increase.

Most significant to Daehn is that they were able to make a deeper impression using the same stamping pressure, and without using any lubricant.

Daehn counted off several potential benefits for industry.

“We can enable the use of higher strength materials and aluminum alloys in manufacturing. We can reduce the amount of equipment associated with metal forming. Parts that used to require multiple steps could be made with one set of tooling, which would mean a big cost savings. And we think we can eliminate reliance on these nasty lubricants,” he said.

From start to finish, the bump forming process can be designed to take five seconds or less per part, which would fit in with typical manufacturing cycles.

Daehn and Vohnout patented their bump forming process, and are seeking further funding to develop it. The National Science Foundation has largely funded the work thus far.


Contact: Glenn Daehn, (614) 292-6779; Daehn.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Glenn Daehn | EurekAlert!
Further information:
http://www.osu.edu/
http://www.mse.eng.ohio-state.edu/
http://www.mse.eng.ohio-state.edu/%7Edaehn/

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>