Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better metal forming: magnetic pulses “bump” metal into shape

10.10.2002


Glenn S. Daehn


Graduate student Jianhui Shang holds two pans stamped from automotive grade aluminum. The pan on the right was stamped using traditional techniques. The one on the left was stamped using the same equipment, but employing Daehn’s electromagnetic bump forming technique.


A process developed at Ohio State University for shaping metal parts using magnetism has reached a new milestone -- one that may cut manufacturing costs and help preserve the environment.

The process could also expand manufacturers’ choice of available metals, and enable the use of aluminum parts in lighter, fuel-efficient automobiles.

Glenn S. Daehn, professor of materials science and engineering, and his colleagues pioneered hybrid electromagnetic metal forming in 1999, while collaborating with the “Big Three” automakers. With this process, a traditional tool and die stamps the general shape of a part out of sheet metal. Afterward, a magnetic field pushes at specific locations of the sheet metal to form fine details or complex shapes.



Now the Ohio State engineers have discovered that they can improve the process if they use the magnetic field to stretch certain portions of the metal during the stamping operation.

In tests, they were able to create an aluminum pan with a depth nearly 1.5 times greater than previously possible, and they did so without relying upon the potentially toxic industrial lubricants normally required for stamping.

Daehn described the improved process Oct. 9 in Columbus, OH, at the annual meeting of the Minerals, Metals, and Materials Society, now known as TMS.

Daehn calls the process “bump forming,” because the magnetic field bumps against the metal in many short pulses -- typically 5 to 20 times in less than one second -- while the metal moves into the die.

Normally, as a sheet of metal bends to fit inside a tool and die, some parts of the sheet stretch more than others. These are the parts that may tear if the metal stretches too much.

With Daehn’s technique, electromagnetic fields work against the parts of the sheet that would not normally stretch, causing them to bow out. With this extra amount of “give” in the metal, other portions of the sheet will be less likely to tear.

The process works well in electrically conductive metals, including aluminum. When exposed to a strong electro-magnetic field from a coil inside the punch portion of the stamping tool, a corresponding electrical current and electromagnetic field form inside the metal. The field in the coil and the field in the metal repel each other, pushing the aluminum away from the punch.

Bump forming could be very useful in mass production, Daehn said. From the auto industry to aerospace and electronics, large manufacturing operations often need to stamp as many as 10 million copies of their metal components per year.

“The process has to be reliable, and require as little human intervention as possible,” Daehn said. “In automobile production especially, manufactures need to make parts in as few steps as they possibly can. I think we can do a lot of good things for industry with this technique.”

Daehn and Ohio State postdoctoral researcher Vincent J. Vohnout developed their bump forming technique with Ishikawajima-Harima Heavy Industries Co., Ltd., one of the largest manufacturing companies in Japan.

Using automotive-grade aluminum, the engineers stamped out a shape similar to a baking pan. Because aluminum tears easily, manufacturers typically need to coat the metal with lubricant in order to stamp it, Daehn explained. The potentially hazardous liquid is then washed from the metal and disposed of, at a significant cost.

With conventional stamping equipment and lubricant, the deepest pan they could create without tearing the aluminum was 1.7 inches (4.4 centimeters). After placing electromagnetic actuators in the same equipment and using the bump forming procedure, they were able to stamp a pan 2.5 inches (6.4 centimeters) deep -- a 47 percent increase.

Most significant to Daehn is that they were able to make a deeper impression using the same stamping pressure, and without using any lubricant.

Daehn counted off several potential benefits for industry.

“We can enable the use of higher strength materials and aluminum alloys in manufacturing. We can reduce the amount of equipment associated with metal forming. Parts that used to require multiple steps could be made with one set of tooling, which would mean a big cost savings. And we think we can eliminate reliance on these nasty lubricants,” he said.

From start to finish, the bump forming process can be designed to take five seconds or less per part, which would fit in with typical manufacturing cycles.

Daehn and Vohnout patented their bump forming process, and are seeking further funding to develop it. The National Science Foundation has largely funded the work thus far.


Contact: Glenn Daehn, (614) 292-6779; Daehn.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Glenn Daehn | EurekAlert!
Further information:
http://www.osu.edu/
http://www.mse.eng.ohio-state.edu/
http://www.mse.eng.ohio-state.edu/%7Edaehn/

More articles from Materials Sciences:

nachricht New material for digital memories of the future
19.10.2017 | Linköping University

nachricht Electrode materials from the microwave oven
19.10.2017 | Technical University of Munich (TUM)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>