Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prototype tools for mass producing nanostructures to launch in Singapore

28.07.2011
The Industrial Consortium On Nanoimprint (ICON), which is helmed by the Institute of Materials Research and Engineering (IMRE), a research institute of Singapore’s Agency for Science, Technology and Research (A*STAR), is ready to put roll-to-roll nanoimprint manufacturing to the test.

Nanoimprinted structures and components are being used in items such as anti-reflection films, and solar cells. However, their impact in consumer products is limited as viable manufacturing processes to scale-up the production of such nanostructures is lacking. IMRE and its partners in ICON are planning to manufacture the structures, using a roll to roll process. This fast, mass production method can create large area nanostructured components, opening the way for new consumer applications not previously conceptualised or economically feasible.

Roll-to-roll imprinting is the third industry-themed project by ICON that includes local and international partners such as Solves Innovative Technology Pte Ltd (Singapore), Advanced Technologies and Regenerative Medicine, LLC (ATRM) (USA), Young Chang Chemical Co. Ltd (South Korea), EV Group (Austria), Micro Resist Technology GmbH (Germany) and NTT Advanced Technology Corporation (Japan). The partners who are raw material providers, tool-makers, and end-users represent the entire value chain for producing nano-structures and putting them to use. Some of the applications that the consortium hopes to harness with roll-to-roll nanoimprint include anti-fouling surfaces, anti-reflection films to enhance the efficiency of solar cells, wire-grid polarisers, and optical films for flat panel displays.

“The roll-to-roll nanoimprinting technique is a crucial centerpiece in ICON’s plan to complete the value chain for harnessing the true potential of our bio-mimetic multifunctional nanoimprint technology surfaces”, said Dr Low Hong Yee, an IMRE senior scientist who heads the team developing the roll-to-roll nanoimprint technology. “With this method we can merge nanoimprint technologies into real-world applications and on an industrial scale”, explained Dr Low, adding that the engineered materials that are produced can be made for a variety of applications. For example, nanostructures can be used to mimic patterns of surfaces found in nature to endow the synthetic surfaces with properties such as inherent colour effects, tack-free adhesion to surfaces, water-proofing and anti-reflectivity.

ICON will be introducing two types of roll-to-roll techniques - a thermal and a UV-based version. The thermal method makes patterns on the substrate directly, can accommodate a variety of plastics for different applications, and is ideally suited for the fabrication of micro- and nano-fluidic devices, biochemical assays as well as other biomedical applications. The UV technique allows quicker processing because it is a room temperature process, and offers the advantage of fabricating the nanostructures on cross-linkable resins, thus imparting higher thermal and mechanical stability to the imprinted products.

“The joint collaborative work with ICON to design and build the first roll-to-roll thermal nanoimprinting machine gives us the chance to work with other industry partners on how this equipment can be applied”, commented Mr Hermann Waltl, Executive Sales and Customer Support Director of EV Group, whose global headquarters is in Austria, on the roll-to-roll thermal nanoimprinter that the company has jointly developed with ICON.

“ICON provides us the opportunity to hear directly from industry about their needs so that we can customise future roll-to-roll equipment designs to specific industry requirements. ICON is all about transitioning scalable nanoimprinting techniques out of the laboratory and into the marketplace. Roll-to-roll strategies certainly fit the bill here. A lot of companies are watching the progress closely”, said Mr Koh Teng Hwee, Managing Director of Solves, a small and medium enterprise that had worked with IMRE to develop the roll-to-roll UV nanoimprinting tool.

“This partnership on roll-to-roll nanoimprinting enhances our competitiveness in the global arena, particularly in helping us create new functional and patterned film technologies for displays and solar cell applications”, said Mr Kim Woo Yong, Global Marketing Director of Young Chang Chemical Co. Ltd, South Korea.

“We are happy to be involved in this groundbreaking project that will bring a new dimension to our core business and help us develop materials for a greater variety of markets and industries,” said Mrs Gabi Gruetzner, Managing Director of Micro Resist Technology GmbH (Germany), a company that specialises in providing photoresists and polymers for micro and nanolithography.

ICON is Singapore’s first nanotechnology consortium that encourages companies to adopt versatile, industry-ready nanoimprinting technology that can bring products to the market through sustainable manufacturing. Nanoimprint technology produces nanometer-sized structures of greater complexity using fewer processing steps, while minimising wastage of materials. It has evolved from a lithography technology for the semiconductor industry to a platform process technology that can be adapted to a wide range of applications. The members of ICON will gain first-hand access to these new technologies by working on joint projects to develop new products and applications that can potentially have huge savings in R&D.

For media enquiries, please contact:
Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235
Email loweom@scei.a-star.edu.sg
For technical enquiries, please contact:
Dr Low Hong Yee
Senior Scientist II
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8133
Email hy-low@imre.a-star.edu.sg
Annex A - A*STAR Corporate Profiles
About the Institute of Materials Research and Engineering (IMRE)
The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally. For more information about IMRE, please visit www.imre.a-star.edu.sg
About the Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, and with other local and international partners. For more information about A*STAR, please visit www.a-star.edu.sg.

Lee Swee Heng | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>