Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precise Measurement Technology for Complex Plastic Films Enables Resource Savings

05.08.2010
Together with the Institute of Plastics Processing (IKV) of the RWTH Aachen University, the Fraunhofer Institute for Laser Technology ILT is presenting the prototype of a film monitoring system to measure individual layer thicknesses in multi-layered films at the International Trade Fair for Plastics and Rubber (Hall 14/ IKV Stand C16).

All over Europe, the average demand for plastic packaging is increasing by 5.5 percent annually. As the second largest producer worldwide, Germany has profited from this increased demand, ranging at 7.5 million tons of plastic packaging a year. In addition, consumers require more and more from plastic packaging, especially for foods.

End users expect fresh products to have a longer shelf life and the packaging to have increasing functionality, such as a display of the degree of freshness. These increasing requirements upon packaging films are reflected technologically in a more and more complex layer composition and an increase of functional layers of plastic films.

As functional layers, expensive materials such as the plastic EVOH, for example, are commonly used. Thanks to its ability to act as a diffusion barrier for oxygen and water vapor, EVOH guarantees a longer shelf life of food. Due to the comparably high material price of the functional plastic, however, plastics processors have been making an effort to keep the share of the product’s raw materials as low as possible while retaining functionality. The thicknesses of the functional layers produced here lie mostly between 1 µm and 20 µm. In order to guarantee a fully functional barrier effect, manufacturers must continuously monitor integrity and thickness of the functional layer. Until now such a film inspection system has not been available, one which can measure the layer composition of multi-layered films at production speeds of up to 450 m/min.

Cost Advantage through Precise Measurement Technology
“While the measurement of the total thickness during the production process is already state-of-the-art, but analyzing the layer construction still occurs in the testing laboratory and not directly at the plant itself. We want to close this technology gap,” explains Janina Overbeck, leader of the working group Blown Film Extrusion at the IKV. “The contactless measurement of individual layer thicknesses during production is the most important step toward automated regulation of production plants for multi-layered plastic films.”

Within the scope of the IRIS project, researchers from the Fraunhofer ILT together with the IKV are developing a system to measure plastic films. This measuring system is based on an interferometric sensor and uses infrared light to detect refractive index changes within a measurement sector. Such refractive index variations appear on the surface of the film as well as on the transitions between the individual film layers.

In addition to better process control, the interferometric sensor will enable a control concept for individual film thicknesses to be implemented. By saving raw materials, companies can attain significant cost reductions. For a machine of medium capacity, this can add up to around €100,000 per year. On the International Trade Fair for Plastics and Rubber (Düsseldorf, Oct. 27 – Nov. 3, 2010), the research partners will be presenting the prototypes of their film inspection system to trade experts at Stand C16 of the IKV in Hall 14.

Close Cooperation with End Users
From the Fraunhofer ILT, Stefan Hölters places great emphasis on practical relevance of the joint research activities: “While the new measuring system has been in development, we have always considered, from the very beginning, the requirements of the plant builders and the film producers.” For this reason both of the institutes have cooperated closely with four small and medium-sized enterprises for this project. For this, Octagon GmbH from Würzburg and Elovis GmbH from Karlsruhe placing their long-term experience in the area of measurement technology into the development. In the coming year, the measurement system will be tested at the plant construction company Kuhne GmbH in Sankt Augustin under near-production conditions, before it is installed at the company A+C Plastic Kunststoff GmbH in Eschweiler on a production plant, where it will go into operation for several months.
Contact Partners at the Fraunhofer ILT
The following experts would gladly answer any questions you may have:
Dipl.-Phys. MBA Stefan Hölters
Measurement Technology
Telephone +49 241 8906-436
stefan.hoelters@ilt.fraunhofer.de
Dr. Reinhard Noll
Leader of the Competence Area Measurement Technology
Telephone +49 241 8906-138
reinhard.noll@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121
Dipl.-Ing. Janina Overbeck
Blown Film Extrusion
Telephone +49 241 80-28349
overbeck@ikv.rwth-aachen.de

Axel Bauer | Fraunhofer ILT
Further information:
http://www.ilt.fraunhofer.de

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>