Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precise Measurement Technology for Complex Plastic Films Enables Resource Savings

05.08.2010
Together with the Institute of Plastics Processing (IKV) of the RWTH Aachen University, the Fraunhofer Institute for Laser Technology ILT is presenting the prototype of a film monitoring system to measure individual layer thicknesses in multi-layered films at the International Trade Fair for Plastics and Rubber (Hall 14/ IKV Stand C16).

All over Europe, the average demand for plastic packaging is increasing by 5.5 percent annually. As the second largest producer worldwide, Germany has profited from this increased demand, ranging at 7.5 million tons of plastic packaging a year. In addition, consumers require more and more from plastic packaging, especially for foods.

End users expect fresh products to have a longer shelf life and the packaging to have increasing functionality, such as a display of the degree of freshness. These increasing requirements upon packaging films are reflected technologically in a more and more complex layer composition and an increase of functional layers of plastic films.

As functional layers, expensive materials such as the plastic EVOH, for example, are commonly used. Thanks to its ability to act as a diffusion barrier for oxygen and water vapor, EVOH guarantees a longer shelf life of food. Due to the comparably high material price of the functional plastic, however, plastics processors have been making an effort to keep the share of the product’s raw materials as low as possible while retaining functionality. The thicknesses of the functional layers produced here lie mostly between 1 µm and 20 µm. In order to guarantee a fully functional barrier effect, manufacturers must continuously monitor integrity and thickness of the functional layer. Until now such a film inspection system has not been available, one which can measure the layer composition of multi-layered films at production speeds of up to 450 m/min.

Cost Advantage through Precise Measurement Technology
“While the measurement of the total thickness during the production process is already state-of-the-art, but analyzing the layer construction still occurs in the testing laboratory and not directly at the plant itself. We want to close this technology gap,” explains Janina Overbeck, leader of the working group Blown Film Extrusion at the IKV. “The contactless measurement of individual layer thicknesses during production is the most important step toward automated regulation of production plants for multi-layered plastic films.”

Within the scope of the IRIS project, researchers from the Fraunhofer ILT together with the IKV are developing a system to measure plastic films. This measuring system is based on an interferometric sensor and uses infrared light to detect refractive index changes within a measurement sector. Such refractive index variations appear on the surface of the film as well as on the transitions between the individual film layers.

In addition to better process control, the interferometric sensor will enable a control concept for individual film thicknesses to be implemented. By saving raw materials, companies can attain significant cost reductions. For a machine of medium capacity, this can add up to around €100,000 per year. On the International Trade Fair for Plastics and Rubber (Düsseldorf, Oct. 27 – Nov. 3, 2010), the research partners will be presenting the prototypes of their film inspection system to trade experts at Stand C16 of the IKV in Hall 14.

Close Cooperation with End Users
From the Fraunhofer ILT, Stefan Hölters places great emphasis on practical relevance of the joint research activities: “While the new measuring system has been in development, we have always considered, from the very beginning, the requirements of the plant builders and the film producers.” For this reason both of the institutes have cooperated closely with four small and medium-sized enterprises for this project. For this, Octagon GmbH from Würzburg and Elovis GmbH from Karlsruhe placing their long-term experience in the area of measurement technology into the development. In the coming year, the measurement system will be tested at the plant construction company Kuhne GmbH in Sankt Augustin under near-production conditions, before it is installed at the company A+C Plastic Kunststoff GmbH in Eschweiler on a production plant, where it will go into operation for several months.
Contact Partners at the Fraunhofer ILT
The following experts would gladly answer any questions you may have:
Dipl.-Phys. MBA Stefan Hölters
Measurement Technology
Telephone +49 241 8906-436
stefan.hoelters@ilt.fraunhofer.de
Dr. Reinhard Noll
Leader of the Competence Area Measurement Technology
Telephone +49 241 8906-138
reinhard.noll@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121
Dipl.-Ing. Janina Overbeck
Blown Film Extrusion
Telephone +49 241 80-28349
overbeck@ikv.rwth-aachen.de

Axel Bauer | Fraunhofer ILT
Further information:
http://www.ilt.fraunhofer.de

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>