Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Heat Freestanding Graphene to Control Curvature of Ripples

19.09.2014

Discovery represents advance in understanding of conductive material

An international team of physicists, led by a research group at the University of Arkansas, has discovered that heating can be used to control the curvature of ripples in freestanding graphene.


Mehdi Neek-Amal, University of Antwerp

Height of the initial buckled graphene state with the bias voltage set to 3 V and the central temperature set to 300 K.

The finding provides fundamental insight into understanding the influence temperature exerts on the dynamics of freestanding graphene. This may drive future applications of the flexible circuits of consumer devices such as cell phones and digital cameras.

While freestanding graphene offers promise as a replacement for silicon and other materials in microprocessors and next-generation energy devices, much remains unknown about its mechanical and thermal properties.

The research team published its findings on Wednesday, Sept. 17, in a paper titled “Thermal mirror buckling in freestanding graphene locally controlled by scanning tunneling microscopy” in the online journal Nature Communications, a publication of the journal Nature.

Previously, scientists have used electric voltage to cause large movements and sudden changes in the curvature of the ripples in freestanding graphene, said Paul Thibado, professor of physics at the University of Arkansas. In this paper, the team showed that an alternative method, thermal load, can be used to control these movements.

“Imagine taking a racquetball and cutting it in half,” said Thibado, an expert in experimental condensed matter physics. “You could invert it by pressing on it. That’s what we did here with a cross-section of a single ripple of freestanding graphene at the nanometer scale. Most materials expand when you heat them. Graphene contracts which is very unusual. So when we heated this cross-section, instead of expanding, it contracted, and that thermal stress caused it to buckle in the opposite direction.”

Graphene, discovered in 2004, is a one-atom-thick sheet of graphite. Electrons moving through graphite have mass and encounter resistance, while electrons moving through graphene are massless, and therefore travel much more freely. This makes graphene an excellent candidate material for use in meeting future energy needs and the fabrication of quantum computers, which make enormous calculations with little energy use.

The study was led by Peng Xu, formerly a postdoctoral research associate in the Department of Physics at the University of Arkansas and currently a postdoctoral research associate at the University of Maryland.

Xu and Thibado used scanning tunneling microscopy, which produces images of individual atoms on a surface, combined with large-scale molecular dynamic simulations to demonstrate the thermal mirror buckling.

In the paper, the third published in a major journal by the research team in 2014, they propose a concept for a new instrument that capitalizes on the control of the mirror buckling: a nanoscale electro-thermal-mechanical device.

Such a device would provide an alternative to microelectromechanical systems, which are tiny machines that are activated electrically. The advantage of this nanoscale electro-thermal-mechanical device would be the ability to change its output using electricity or heat. In addition, thermal loads can provide a significantly larger force.

The study, funded by the Office of Naval Research and the National Science Foundation, was conducted primarily through a research partnership between the University of Arkansas and the University of Antwerp in Belgium.

The results were obtained through a collaborative effort with University of Arkansas physics graduate students Steven D. Barber, James Kevin Schoelz and Matthew L. Ackerman; Mehdi Neek-Amal of the University of Antwerp and Shahid Rajaee Teacher Training University in Iran, Ali Sadeghi of the University of Basel in Switzerland and Francois Peeters of the University of Antwerp.

Contact:
Paul Thibado, professor, physics
J. William Fulbright College of Arts and Sciences
479-575-7932, thibado@uark.edu

Chris Branam | newswise

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>