Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New photonic material may facilitate all-optical switching and computing

24.02.2010
Designing molecules

A class of molecules whose size, structure and chemical composition have been optimized for photonic use could provide the demanding combination of properties needed to serve as the foundation for low-power, high-speed all-optical signal processing.

All-optical switching could allow dramatic speed increases in telecommunications by eliminating the need to convert photonic signals to electronic signals – and back – for switching. All-optical processing could also facilitate photonic computers with similar speed advances.

Details of these materials – and the design approach behind them – were reported February 18th in Science Express, the rapid online publication of the journal Science. Conducted at the Georgia Institute of Technology, the research was funded by the National Science Foundation (NSF), the Defense Advanced Research Projects Agency (DARPA) and the Office of Naval Research (ONR).

"This work provides proof that at least from a molecular point of view, we can identify and produce materials that have the right properties for all-optical processing," said Seth Marder, a professor in the Georgia Tech School of Chemistry and Biochemistry and co-author of the paper. "This opens the door for looking at this issue in an entirely different way."

The polymethine organic dye materials developed by the Georgia Tech team combine large nonlinear properties, low nonlinear optical losses, and low linear losses. Materials with these properties are essential if optical engineers are to develop a new generation of devices for low-power and high-contrast optical switching of signals at telecommunications wavelengths. Keeping data all-optical would greatly facilitate the rapid transmission of detailed medical images, development of new telepresence applications, high-speed image recognition – and even the fast download of high-definition movies.

But favorable optical properties these new materials developed at Georgia Tech have only been demonstrated in solution. For their materials to have practical value, the researchers will have to incorporate them in a solid phase for use in optical waveguides – and address a long list of other challenges.

"We have developed high-performing materials by starting with optimized molecules and getting the molecular properties right," said co-author Joseph Perry, also a professor in the Georgia Tech School of Chemistry and Biochemistry. "Now we have to figure out how to pack them together so they have a high density and useful physical forms that would be stable under operation."

Marder, Perry and collaborators in Georgia Tech's Center for Organic Photonics and Electronics (COPE) have been working on the molecules for several years, refining their properties and adding atoms to maximize their length without inducing symmetry breaking, a phenomenon in which unequal charges build up within molecules. This molecular design effort, which builds on earlier research with smaller molecules, included both experimental work – and theoretical studies done in collaboration with Jean-Luc Bredas, a also a professor in the School of Chemistry and Biochemistry.

The design strategies identified by the research team – which also included Joel Hales, Jonathan Matichak, Stephen Barlow, Shino Ohira, and Kada Yesudas – could be applied to development of even more active molecules, though Marder believes the existing materials could be modified to meet the needs of all-optical processing

"For this class of molecules, we can with a high-degree of reliability predict where the molecules will have both large optical nonlinearities and low two-photon absorption," said Marder. "Not only can we predict that, but using well-established chemical principles, we can tune where that will occur such that if people want to work at telecommunications wavelengths, we can move to where the molecules absorb to optimize its properties."

Switching of optical signals carried in telecommunications networks currently requires conversion to electrical signals, which must be switched and then converted back to optical format. Existing electro-optical technology may ultimately be able to provide transmission speeds of up to 100 gigabits-per-second. However, all-optical processing could theoretically transmit data at speeds as high as 2,000 gigabits-per-second, allowing download of high-definition movies in minutes rather than hours.

"Even if the frequency of signals coming and going is high, there is a latency that causes a bottleneck for the signals until the modulation and switching are done," Perry explained. "If we can do that all optically, then that delay can be reduced. We need to get electronics out of the system."

Perry and Marder emphasize that many years of research remain ahead before their new materials will be practical. But they believe the approach they've developed charts a path toward all-optical systems.

"While we have not made all-optical switches, what we have done is provide a fundamental understanding of what the systems are that could have the combined set of properties that would make this possible," Marder said. "Conceptually, we have probably made it over the hump with this class of molecules. The next part of this work will be difficult, but it will not require a fundamental new understanding of the molecular structure."

This article is based on work supported in part by the STC program of the National Science Foundation under agreement DMR-0120967, the DARPA MORPH Program and ONR (N00014-04-0095 and N00014-06-1-0897) and the DARPA ZOE Program (W31P4Q-09-1-0012). The comments and opinions expressed are those of the researchers and do not necessarily represent the views of the NSF, DARPA or ONR.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Contacts: John Toon (404-894-6986)(jtoon@gatech.edu) or Abby Vogel (404-385-3364)(avogel@gatech.edu).

Writer: John Toon

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>