Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test reveals purity of graphene

14.08.2014

Rice, Osaka scientists use terahertz waves to spot contaminants

Graphene may be tough, but those who handle it had better be tender. The environment surrounding the atom-thick carbon material can influence its electronic performance, according to researchers at Rice and Osaka universities who have come up with a simple way to spot contaminants.


Rice and Osaka researchers have come up with a simple method to find contaminants on atom-thick graphene. By putting graphene on a layer of indium phosphide, which emits terahertz waves when excited by a laser pulse, they can measure and map changes in its electrical conductivity. (Credit: Rice and Osaka universities)


An amplitude map of terahertz radiation emitted from graphene-coated indium phosphide shows where oxygen molecules have settled on the surface after exposure to air for a few weeks. The blue at point 1 indicates high polarization due to the adsorption of oxygen molecules, while the orange at point 2 is electronically equivalent to bare indium phosphide. The research by Rice and Osaka universities makes possible a simple way to spot contaminants on graphene. (Credit: Rice and Osaka universities)

Because it's so easy to accidently introduce impurities into graphene, labs led by physicists Junichiro Kono of Rice and Masayoshi Tonouchi of Osaka's Institute of Laser Engineering discovered a way to detect and identify out-of-place molecules on its surface through terahertz spectroscopy.

They expect the finding to be important to manufacturers considering the use of graphene in electronic devices.

The research was published this week by Nature's open-access online journal Scientific Reports. It was made possible by the Rice-based NanoJapan program, through which American undergraduates conduct summer research internships in Japanese labs.

Even a single molecule of a foreign substance can contaminate graphene enough to affect its electrical and optical properties, Kono said. Unfortunately (and perhaps ironically), that includes electrical contacts.

"Traditionally, in order to measure conductivity in a material, one has to attach contacts and then do electrical measurements," said Kono, whose lab specializes in terahertz research. "But our method is contact-less."

That's possible because the compound indium phosphide emits terahertz waves when excited. The researchers used it as a substrate for graphene. Hitting the combined material with femtosecond pulses from a near-infrared laser prompted the indium phosphide to emit terahertz back through the graphene. Imperfections as small as a stray oxygen molecule on the graphene were picked up by a spectrometer.

"The change in the terahertz signal due to adsorption of molecules is remarkable," Kono said. "Not just the intensity but also the waveform of emitted terahertz radiation totally and dynamically changes in response to molecular adsorption and desorption. The next step is to explore the ultimate sensitivity of this unique technique for gas sensing."

The technique can measure both the locations of contaminating molecules and changes over time. "The laser gradually removes oxygen molecules from the graphene, changing its density, and we can see that," Kono said.

The experiment involved growing pristine graphene via chemical vapor deposition and transferring it to an indium phosphide substrate. Laser pulses generated coherent bursts of terahertz radiation through a built-in surface electric field of the indium phosphide substrate that changed due to charge transfer between the graphene and the contaminating molecules. The terahertz wave, when visualized, reflected the change.

The experimental results are a warning for electronics manufacturers. "For any future device designs using graphene, we have to take into account the influence of the surroundings," said Kono. Graphene in a vacuum or sandwiched between noncontaminating layers would probably be stable, but exposure to air would contaminate it, he said.

The Rice and Osaka labs are continuing to collaborate on a project to measure the terahertz conductivity of graphene on various substrates, he said.

###

The paper's authors include Rice alumna Mika Tabata, who conducted research as a 2012 NanoJapan participant in the Tonouchi lab, and graduate student Minjie Wang; associate professors Iwao Kawayama and Hironaru Murakami and graduate students Yuki Sano and Khandoker Abu Salek of Osaka; and Robert Vajtai, a senior faculty fellow, and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering, professor of materials science and nanoengineering and of chemistry, and chair of the Department of Materials Science and NanoEngineering, both at Rice.

The National Science Foundation (NSF); the Japan Society for the Promotion of Science; the Ministry of Education, Culture, Sports, Science and Technology-Japan and the Murata Science Foundation supported the research. NanoJapan is funded by the NSF's Partnerships for International Research and Education program.

Read the abstract at http://www.nature.com/srep/2014/140813/srep06046/full/srep06046.html

This news release can be found online at http://news.rice.edu/2014/08/13/new-test-reveals-purity-of-graphene/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Junichiro Kono Laboratory: http://www.ece.rice.edu/%7Eirlabs/

Tonouchi Lab: http://www.ile.osaka-u.ac.jp/research/thp/indexeng.html

Ajayan Research Group: http://ajayan.rice.edu

Images for download:

http://news.rice.edu/wp-content/uploads/2014/07/0804_GRAPHENE-1-WEB.jpg

Rice and Osaka researchers have come up with a simple method to find contaminants on atom-thick graphene. By putting graphene on a layer of indium phosphide, which emits terahertz waves when excited by a laser pulse, they can measure and map changes in its electrical conductivity. (Credit: Rice and Osaka universities)

http://news.rice.edu/wp-content/uploads/2014/07/0804_GRAPHENE-2-WEB.jpg

An amplitude map of terahertz radiation emitted from graphene-coated indium phosphide shows where oxygen molecules have settled on the surface after exposure to air for a few weeks. The blue at point 1 indicates high polarization due to the adsorption of oxygen molecules, while the orange at point 2 is electronically equivalent to bare indium phosphide. The research by Rice and Osaka universities makes possible a simple way to spot contaminants on graphene. (Credit: Rice and Osaka universities)

http://news.rice.edu/wp-content/uploads/2014/08/0804_GRAPHENE-3-WEB.jpg

A new test that determines the purity of graphene was developed through the Rice University-based NanoJapan program that sends American undergraduate students to Japan for summer research internships. Members of the research team at the Osaka lab of physicist Masayoshi Tonouchi include, from left, rear: Khandoker Salek, Hiroki Nishida, Iwao Kawayama, Rice alumna Mika Tabata, Yuki Sano and Hironaru Murakami; and front, Kento Mizui, Tonouchi and Kazunori Serita. (Credit: NanoJapan)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

David Ruth | Eurek Alert!

More articles from Materials Sciences:

nachricht New method to identify microscopic failure
18.08.2016 | Beckman Institute for Advanced Science and Technology

nachricht Enhanced electron doping on iron superconductors discovered
16.08.2016 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>