Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecular property may mean more efficient solar and opto-electronic devices

25.02.2016

Unexpected property in organic semiconductor molecule could lead to more efficient and cost-effective materials for cell phone and laptop displays

Chemists and polymer scientists collaborating at the University of Massachusetts Amherst report in Nature Communications this week that they have for the first time identified an unexpected property in an organic semiconductor molecule that could lead to more efficient and cost-effective materials for use in cell phone and laptop displays, for example, and in opto-electronic devices such as lasers, light-emitting diodes and fiber optic communications.


A new paper from UMass Amherst describes a structure that will make it easier to use a certain molecule for new applications, for example in devices that use polarized light input for optical switching, by exploiting its directionality. Inset shows a structural schematic of the TAT crystal packing geometry and direction of charge separation.

Credit: UMass Amherst/Mike Barnes

Physical chemist Michael Barnes and polymer scientist Alejandro Briseño, with doctoral students Sarah Marques, Hilary Thompson, Nicholas Colella and postdoctoral researcher Joelle Labastide, discovered the property, directional intrinsic charge separation, in crystalline nanowires of an organic semiconductor known as 7,8,15,16-tetraazaterrylene (TAT).

The researchers saw not only efficient separation of charges in TAT, but a very specific directionality that Barnes says "is quite useful. It adds control, so we're not at the mercy of random movement, which is inefficient. Our paper describes an aspect of the nanoscopic physics within individual crystals, a structure that will make it easier to use this molecule for new applications such as in devices that use polarized light input for optical switching. We and others will immediately exploit this directionality."

He adds, "Observing the intrinsic charge separation doesn't happen in polymers, so far as we know it only happens in this family of small organic molecule crystalline assemblies or nanowires. In terms of application we are now exploring ways to arrange the crystals in a uniform pattern and from there we can turn things on or off depending on optical polarization, for example."

However, the UMass Amherst team believes the property is not an oddity unique to this material, but that several materials potentially share it, making the discoveries in TAT interesting to a wide variety of researchers, Barnes says. Similar kinds of observations have been noted in pentacene crystals, he notes, which show something similar but without directionality. In this work supported by the U.S. Department of Energy and UMass Amherst's Center for Hierarchical Manufacturing, they propose that the effect comes from a charge-transfer interaction in the molecule's charge-conducing nanowires that can be programmed.

In the conventional view of harvesting solar energy with organic or carbon-based organic materials, the chemist explains, scientists understood that the organic active layers at work in devices absorb light, which leads to an excited state known as an exciton. In this mechanism, the exciton migrates to an interface boundary where it separates into a positive and negative charge, freeing the voltage to be used as power. "In this view, you hope that the light is well absorbed so the transfer is efficient," he says.

In earlier work, Barnes, Briseño and others at UMass Amherst worked to control the domain size of materials to match what was believed to be the distance an exciton can travel in the time it takes to radiate, he adds. "All of this premised on idea that the mechanism for charge separation is extrinsic, that an external driving force separates the charges," he notes. The goal had been to remove the need for that interface."

Most recently, Briseño and colleagues reached a point in synthesizing crystals where their polymer-based devices were not performing the way they wanted, he relates. Briseño asked Barnes and colleagues to use their special measurement instrumentation to investigate. Barnes and colleagues found a structural defect that Briseño could fix. "We provided some diagnostics to him to improve their crystal growth," Barnes says.

"From this, we noticed clues that there were some very interesting things going on, which led us to the discovery," Barnes adds. "It's fun when science works that way. It was a very nice mutually beneficial relationship."

"What Nature brought us was something really much richer and more interesting than anything we could have anticipated. We thought it was going to be qualitatively similar to previous observations, perhaps different in quantitative particulars, but the real story is far more interesting. In this material, they found the way it packs crystals gives rise to its own separation, an intrinsic property of the crystalline material."

Media Contact

Janet Lathrop
jlathrop@admin.umass.edu
413-545-0444

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>