Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecular property may mean more efficient solar and opto-electronic devices

25.02.2016

Unexpected property in organic semiconductor molecule could lead to more efficient and cost-effective materials for cell phone and laptop displays

Chemists and polymer scientists collaborating at the University of Massachusetts Amherst report in Nature Communications this week that they have for the first time identified an unexpected property in an organic semiconductor molecule that could lead to more efficient and cost-effective materials for use in cell phone and laptop displays, for example, and in opto-electronic devices such as lasers, light-emitting diodes and fiber optic communications.


A new paper from UMass Amherst describes a structure that will make it easier to use a certain molecule for new applications, for example in devices that use polarized light input for optical switching, by exploiting its directionality. Inset shows a structural schematic of the TAT crystal packing geometry and direction of charge separation.

Credit: UMass Amherst/Mike Barnes

Physical chemist Michael Barnes and polymer scientist Alejandro Briseño, with doctoral students Sarah Marques, Hilary Thompson, Nicholas Colella and postdoctoral researcher Joelle Labastide, discovered the property, directional intrinsic charge separation, in crystalline nanowires of an organic semiconductor known as 7,8,15,16-tetraazaterrylene (TAT).

The researchers saw not only efficient separation of charges in TAT, but a very specific directionality that Barnes says "is quite useful. It adds control, so we're not at the mercy of random movement, which is inefficient. Our paper describes an aspect of the nanoscopic physics within individual crystals, a structure that will make it easier to use this molecule for new applications such as in devices that use polarized light input for optical switching. We and others will immediately exploit this directionality."

He adds, "Observing the intrinsic charge separation doesn't happen in polymers, so far as we know it only happens in this family of small organic molecule crystalline assemblies or nanowires. In terms of application we are now exploring ways to arrange the crystals in a uniform pattern and from there we can turn things on or off depending on optical polarization, for example."

However, the UMass Amherst team believes the property is not an oddity unique to this material, but that several materials potentially share it, making the discoveries in TAT interesting to a wide variety of researchers, Barnes says. Similar kinds of observations have been noted in pentacene crystals, he notes, which show something similar but without directionality. In this work supported by the U.S. Department of Energy and UMass Amherst's Center for Hierarchical Manufacturing, they propose that the effect comes from a charge-transfer interaction in the molecule's charge-conducing nanowires that can be programmed.

In the conventional view of harvesting solar energy with organic or carbon-based organic materials, the chemist explains, scientists understood that the organic active layers at work in devices absorb light, which leads to an excited state known as an exciton. In this mechanism, the exciton migrates to an interface boundary where it separates into a positive and negative charge, freeing the voltage to be used as power. "In this view, you hope that the light is well absorbed so the transfer is efficient," he says.

In earlier work, Barnes, Briseño and others at UMass Amherst worked to control the domain size of materials to match what was believed to be the distance an exciton can travel in the time it takes to radiate, he adds. "All of this premised on idea that the mechanism for charge separation is extrinsic, that an external driving force separates the charges," he notes. The goal had been to remove the need for that interface."

Most recently, Briseño and colleagues reached a point in synthesizing crystals where their polymer-based devices were not performing the way they wanted, he relates. Briseño asked Barnes and colleagues to use their special measurement instrumentation to investigate. Barnes and colleagues found a structural defect that Briseño could fix. "We provided some diagnostics to him to improve their crystal growth," Barnes says.

"From this, we noticed clues that there were some very interesting things going on, which led us to the discovery," Barnes adds. "It's fun when science works that way. It was a very nice mutually beneficial relationship."

"What Nature brought us was something really much richer and more interesting than anything we could have anticipated. We thought it was going to be qualitatively similar to previous observations, perhaps different in quantitative particulars, but the real story is far more interesting. In this material, they found the way it packs crystals gives rise to its own separation, an intrinsic property of the crystalline material."

Media Contact

Janet Lathrop
jlathrop@admin.umass.edu
413-545-0444

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>