Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Materials for Future Green Tech Devices

17.07.2014

Comprehensive analysis in the journal "APL Materials" provides blueprint for making thermoelectric materials that convert heat and electricity with greater efficiency

From your hot car to your warm laptop, every machine and device in your life wastes a lot of energy through the loss of heat. But thermoelectric devices, which convert heat to electricity and vice versa, can harness that wasted heat, and possibly provide the green tech energy efficiency that's needed for a sustainable future.


APL Materials

Schematic illustration of the multilayer configuration with layers of different porosity (graded porous material). Each layer contains a concentration of periodically distributed pores of the same size (only one set of such particles is shown).

Now, a new study shows how porous substances can act as thermoelectric materials—pointing the way for engineering the use of such materials in thermoelectric devices of the future.

About 70 percent of all the energy generated in the world is wasted as heat, said Dimitris Niarchos of the National Center for Scientific Research Demokritos in Athens, Greece. He and Roland Tarkhanyan, also of NCSR Demokritos, have published their analysis in the journal APL Materials, from AIP Publishing.

To create the technology needed to capture this heat, researchers around the world have been trying to engineer more efficient thermoelectric materials. One promising material is one that's filled with tiny holes that range in size from about a micron (10-6 meters) to about a nanometer (10-9 meters). "Porous thermoelectrics can play a significant role in improving thermoelectrics as a viable alternative for harvesting wasted heat," Niarchos said.

Heat travels through a material via phonons, quantized units of vibration that act as heat-carrying particles. When a phonon runs into a hole, it scatters and loses energy. Phonons thus can't carry heat across a porous material as efficiently, giving the material a low thermal conductivity, which turns out to increase the efficiency of heat-to-electricity conversion. The more porous the material, the lower the thermal conductivity, and the better it is as a thermoelectric material.

So far, however, researchers have yet to systematically model how porous materials maintain low thermal conductivity, Niarchos said. So he and Tarkhanyan studied the thermal properties of four simple model structures of micro-nano porous materials. This analysis, Niarchos says, provides a rough blueprint for how to design such materials for thermoelectric devices.

Overall, the researchers found that the smaller the pores and the closer they're packed together, the lower the thermal conductivity. Their calculations match data from other experiments well, Niarchos said. They also show that, in principle, micro-nano porous materials can be several times better at converting heat to electricity than if the material had no pores.

The first model describes a material filled with holes of random sizes, ranging from microns to nanometers in diameter. The second is one with multiple layers in which each layer contains pores of different size scales, which gives it a different porosity. The third is a material that's composed of a three-dimensional cubic lattice of identical holes. The fourth is another multilayered system. But in this case, each layer contains a cubic lattice of identical holes. The size of the holes is different in each layer.

According to the analysis, the first and fourth models have lower thermal conductivities than the second. The third model seems to be the best one, as it also has a lower thermal conductivity than the fourth model.

Except for the first model, however, all the models aren't practical because they represent idealized situations with a perfect arrangement of pores, Niarchos said. It's also practically impossible to create precisely equal-sized pores. The first model is thus the most realistic.

Still, he said, all the distinct models demonstrate the importance of porosity in thermoelectric materials. Built upon simple and general analytical formulas, the models allow for a very fast and accurate computation of the effective lattice thermal conductivity of a porous material and the systematic analysis of such materials.

The article, "Reduction of thermal conductivity in porous ‘gray’ materials," is authored by Roland H. Tarkhanyan and Dimitris Niarchos. It appears in the journal APL Materials on July 15, 2014. After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/aplmater/2/7/10.1063/1.4886220

ABOUT THE JOURNAL
APL Materials is a new open access journal featuring original research on significant topical issues within the field of materials science. See: http://aplmaterials.aip.org

Jason Socrates Bardi | newswise

Further reports about: AIP APL Devices Physics conductivity electricity heat lattice materials models nanometers pores porous

More articles from Materials Sciences:

nachricht Dirty to drinkable
27.07.2016 | Washington University in St. Louis

nachricht New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials
26.07.2016 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>