Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoplasmonics - Hunt for nonlocal effects turns to gold

14.02.2014
Experiments on tiny gold prisms help to explain the unusual electrodynamics of nanostructures

Nanoplasmonics — the study of light manipulation on the nanometer scale — has contributed to the production of novel devices for chemical and biological sensing, signal processing and solar energy.

However, components at such small scales experience strange effects that classical electrodynamics cannot explain. A particular challenge for theorists lies in isolating so-called ‘nonlocal’ effects, whereby the optical properties of a particle are not constant but depend on nearby electromagnetic fields.

Now, Joel Yang and colleagues at the A*STAR Institute of Materials Research and Engineering in Singapore, with co-workers in the United Kingdom and China, have used both simulations and experiments to investigate the nonlocal effects displayed by electrons in metal nanostructures1.

The team developed three-dimensional simulations of electron-energy loss spectroscopy (EELS) spectra. EELS is a powerful laboratory technique that can provide information on nanostructure geometries, but also gives rise to nonlocal effects. An EELS device is used to fire energetic electrons at a metal nanostructure and then to measure how much energy the electrons lose when they excite plasmon resonances in the sample. Previously, it had been difficult for experimentalists to correctly interpret EELS spectra because the nonlocal effects are not considered in current theory — the relevant solutions of Maxwell’s field equations.

Yang and co-workers present the first full three-dimensional solution of Maxwell’s equations for a sample being probed by an EELS source. “Our theoretical configuration mimics the experimental setup and the equations were, for the first time, implemented and solved using commercial software,” says Yang.

The researchers applied their theory to triangular gold nanoprisms and concluded that significant nonlocal effects occur when the side length of the prisms is smaller than 10–50 nanometers, causing a spatial dispersion of electromagnetic fields. They then examined real EELS results for gold ‘bowtie’ nanostructures — each gold bowtie was created by joining two nanoprisms at their peaks using gold bridges as narrow as 1.6 nanometers (see image).

The real bowties exhibited a similar spatial field dispersion to that anticipated for single prisms, but with greatly reduced high-frequency conduction at the narrow connective bridges. The researchers speculate that the field reduction is caused by two factors not included in their model — quantum confinement in the narrow bridges as well as electron scattering from grain boundaries. These factors help to explain the interplay between nonlocality and geometry.

“Existing models tend to treat metals as having homogeneous optical properties,” says Yang. “Our results suggest that at the nanoscale we need to take account of quantum confinement and granularity.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

Wiener, A., Duan, H., Bosman, M., Horsfield, A. P., Pendry, J. B. et al. Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms. ACS Nano 7, 6287–6296 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Fast flowing heat in layered material heterostructures
18.12.2017 | Graphene Flagship

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>