Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoplasmonics - Hunt for nonlocal effects turns to gold

14.02.2014
Experiments on tiny gold prisms help to explain the unusual electrodynamics of nanostructures

Nanoplasmonics — the study of light manipulation on the nanometer scale — has contributed to the production of novel devices for chemical and biological sensing, signal processing and solar energy.

However, components at such small scales experience strange effects that classical electrodynamics cannot explain. A particular challenge for theorists lies in isolating so-called ‘nonlocal’ effects, whereby the optical properties of a particle are not constant but depend on nearby electromagnetic fields.

Now, Joel Yang and colleagues at the A*STAR Institute of Materials Research and Engineering in Singapore, with co-workers in the United Kingdom and China, have used both simulations and experiments to investigate the nonlocal effects displayed by electrons in metal nanostructures1.

The team developed three-dimensional simulations of electron-energy loss spectroscopy (EELS) spectra. EELS is a powerful laboratory technique that can provide information on nanostructure geometries, but also gives rise to nonlocal effects. An EELS device is used to fire energetic electrons at a metal nanostructure and then to measure how much energy the electrons lose when they excite plasmon resonances in the sample. Previously, it had been difficult for experimentalists to correctly interpret EELS spectra because the nonlocal effects are not considered in current theory — the relevant solutions of Maxwell’s field equations.

Yang and co-workers present the first full three-dimensional solution of Maxwell’s equations for a sample being probed by an EELS source. “Our theoretical configuration mimics the experimental setup and the equations were, for the first time, implemented and solved using commercial software,” says Yang.

The researchers applied their theory to triangular gold nanoprisms and concluded that significant nonlocal effects occur when the side length of the prisms is smaller than 10–50 nanometers, causing a spatial dispersion of electromagnetic fields. They then examined real EELS results for gold ‘bowtie’ nanostructures — each gold bowtie was created by joining two nanoprisms at their peaks using gold bridges as narrow as 1.6 nanometers (see image).

The real bowties exhibited a similar spatial field dispersion to that anticipated for single prisms, but with greatly reduced high-frequency conduction at the narrow connective bridges. The researchers speculate that the field reduction is caused by two factors not included in their model — quantum confinement in the narrow bridges as well as electron scattering from grain boundaries. These factors help to explain the interplay between nonlocality and geometry.

“Existing models tend to treat metals as having homogeneous optical properties,” says Yang. “Our results suggest that at the nanoscale we need to take account of quantum confinement and granularity.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Journal information

Wiener, A., Duan, H., Bosman, M., Horsfield, A. P., Pendry, J. B. et al. Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms. ACS Nano 7, 6287–6296 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>