Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiferroics -- making a switch the electric way

26.05.2009
Multiferroics are materials in which unique combinations of electric and magnetic properties can simultaneously coexist.

They are potential cornerstones in future magnetic data storage and spintronic devices provided a simple and fast way can be found to turn their electric and magnetic properties on and off.

In a promising new development, researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) working with a prototypical multiferroic have successfully demonstrated just such a switch -- electric fields.

"Using electric fields, we have been able to create, erase and invert p–n junctions in a calcium-doped bismuth ferrite film," said Ramamoorthy Ramesh of Berkeley Lab's Materials Sciences Division (MSD), who led this research.

"Through the combination of electronic conduction with the electric and magnetic properties already present in the multiferroic bismuth ferrite, our demonstration opens the door to merging magnetoelectrics and magnetoelectronics at room temperature."

Ramesh, who is also a professor in the Department of Materials Science and Engineering and the Department of Physics at UC Berkeley, has published a paper on this research that is now available in the on-line edition of the journal Nature Materials. The paper is titled: "Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films." Co-authoring the paper with Ramesh were Chan-Ho Yang, Jan Seidel,Sang-Yong Kim, Pim Rossen, Pu Yu, Marcin Gajek, Ying-Hao Chu, Lane Martin, Micky Holcomb, Qing He, Petro Maksymovych, Nina Balke, Sergei Kalinin, Arthur Baddorf, Sourav Basu and Matthew Scullin.

The next generation of computers promises to be smaller, faster and far more versatile than today's devices thanks in part to the anticipated development of memory chips that store data through electron spin and its associated magnetic moment rather than electron charge. Because multiferroics simultaneously exhibit two or more ferro electric or magnetic properties in response to changes in their environment, they're considered prime candidates to be the materials of choice for this technology.

Bismuth ferrite is a multiferroic comprised of bismuth, iron and oxygen (BiFeO3). It is both ferroelectric and antiferromagnetic ("ferro" refers to magnetism in iron but the term has grown to include materials and properties that have nothing to do with iron), and has commanded particular interest in the spintronics field, especially after a surprising discovery by Ramesh and his group earlier this year. They found that although bismuth ferrite is an insulating material, running through its crystals are ultrathin (two-dimensional) sheets called "domain walls" that conduct electricity at room temperature. This discovery suggested that with the right doping, the conducting states in bismuth ferrite could be stabilized, opening the possibility of creating p-n junctions, a crucial key to solid state electronics.

"Insulator to conductor transitions are typically controlled through the combination of chemical doping and magnetic fields but magnetic fields are too expensive and energy-consuming to be practical in commercial devices," said Ramesh. "Electric fields are much more useful control parameters because you can easily apply a voltage across a sample and modulate it as needed to induce insulator-conductor transitions."

In their new study, Ramesh and his group first doped the bismuth ferrite with calcium acceptor ions, which are known to increase the amount of electric current that materials like bismuth ferrite can carry. The addition of the calcium ions created positively-charged oxygen vacancies. When an electric field was applied to the calcium-doped bismuth ferrite films, the oxygen vacancies became mobile. The electric field "swept" the oxygen vacancies towards the film's top surface, creating an n-type semiconductor in that portion of the film, while the immobile calcium ions created a p-type semiconductor in the bottom portion. Reversing the direction of the electric field inverted the n-type and p-type semiconductor regions, and a moderate field erased them.

"It is the same principle as in a CMOS device where the application of a voltage serves as an on/off switch that controls electron transport properties and changes electrical resistance from high (insulator) to low (conductor)," said Ramesh.

Whereas a typical CMOS device features an on/off switching ratio (the difference between resistance and non-resistance to electrical current) of about one million, Ramesh and his group achieved an on/off switching ratio of about a thousand in their calcium-doped bismuth ferrite films. While this ratio is sufficient for device operation and double the best ratio achieved with magnetic fields, Chan-Ho Yang, lead author on this Nature Materials paper and a post-doc in Ramesh's group says it can be improved.

"To make the ON state more conductive, we have many ideas to try such as different calcium-doping ratios, different strain states, different growth conditions, and eventually different compounds using the same idea," Yang said.

A year ago, Ramesh and his group demonstrated that an electric field could be used to control ferromagnetism in a non-doped bismuth ferrite film. (See Nature Materials, "Electric-field control of local ferromagnetism using a magnetoelectric multiferroic" by Ramesh, et. al)

With this new demonstration that the combination of doping and an applied electric field can change the insulating-conducting state of a multiferroic, he and his colleagues have shown one way forward in adapting multiferroics to such phenomena as colossal magnetoresistance, high temperature superconductivity and SQUID-type magnetic field detectors as well as spintronics.

Said Yang, "Oxides such as bismuth ferrite are abundant and display many exotic properties including high-temperature superconductivity and colossal magnetoresistance, but they have not been used much in real applications because it has been so difficult to control defects, especially, oxygen vacancies. Our observations suggest a general technique to make oxygen vacancy defects controllable."

Much of the work in this latest study by Ramesh and his group was carried out at Berkeley Lab's Advanced Light Source (ALS), on the PEEM2 microscope. PEEM, which stands for PhotoEmission Electron Microscopy, is an ideal technique for studying ferro magnetic and antimagnetic domains, and PEEM2, powered by a bend magnet at ALS beamline 7.3.1.1, is one of the world's best instruments, able to resolve features only a few nanometers thick.

"Without the capabilities of PEEM2 our experiments would have been dead in the water," said Ramesh. "Andreas Scholl (who manages PEEM2) and his ALS team were an enormous help."

This research was primarily supported by the U.S. Department of Energy's Office of Science through its Basic Energy Sciences program.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>