Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiferroics -- making a switch the electric way

26.05.2009
Multiferroics are materials in which unique combinations of electric and magnetic properties can simultaneously coexist.

They are potential cornerstones in future magnetic data storage and spintronic devices provided a simple and fast way can be found to turn their electric and magnetic properties on and off.

In a promising new development, researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) working with a prototypical multiferroic have successfully demonstrated just such a switch -- electric fields.

"Using electric fields, we have been able to create, erase and invert p–n junctions in a calcium-doped bismuth ferrite film," said Ramamoorthy Ramesh of Berkeley Lab's Materials Sciences Division (MSD), who led this research.

"Through the combination of electronic conduction with the electric and magnetic properties already present in the multiferroic bismuth ferrite, our demonstration opens the door to merging magnetoelectrics and magnetoelectronics at room temperature."

Ramesh, who is also a professor in the Department of Materials Science and Engineering and the Department of Physics at UC Berkeley, has published a paper on this research that is now available in the on-line edition of the journal Nature Materials. The paper is titled: "Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films." Co-authoring the paper with Ramesh were Chan-Ho Yang, Jan Seidel,Sang-Yong Kim, Pim Rossen, Pu Yu, Marcin Gajek, Ying-Hao Chu, Lane Martin, Micky Holcomb, Qing He, Petro Maksymovych, Nina Balke, Sergei Kalinin, Arthur Baddorf, Sourav Basu and Matthew Scullin.

The next generation of computers promises to be smaller, faster and far more versatile than today's devices thanks in part to the anticipated development of memory chips that store data through electron spin and its associated magnetic moment rather than electron charge. Because multiferroics simultaneously exhibit two or more ferro electric or magnetic properties in response to changes in their environment, they're considered prime candidates to be the materials of choice for this technology.

Bismuth ferrite is a multiferroic comprised of bismuth, iron and oxygen (BiFeO3). It is both ferroelectric and antiferromagnetic ("ferro" refers to magnetism in iron but the term has grown to include materials and properties that have nothing to do with iron), and has commanded particular interest in the spintronics field, especially after a surprising discovery by Ramesh and his group earlier this year. They found that although bismuth ferrite is an insulating material, running through its crystals are ultrathin (two-dimensional) sheets called "domain walls" that conduct electricity at room temperature. This discovery suggested that with the right doping, the conducting states in bismuth ferrite could be stabilized, opening the possibility of creating p-n junctions, a crucial key to solid state electronics.

"Insulator to conductor transitions are typically controlled through the combination of chemical doping and magnetic fields but magnetic fields are too expensive and energy-consuming to be practical in commercial devices," said Ramesh. "Electric fields are much more useful control parameters because you can easily apply a voltage across a sample and modulate it as needed to induce insulator-conductor transitions."

In their new study, Ramesh and his group first doped the bismuth ferrite with calcium acceptor ions, which are known to increase the amount of electric current that materials like bismuth ferrite can carry. The addition of the calcium ions created positively-charged oxygen vacancies. When an electric field was applied to the calcium-doped bismuth ferrite films, the oxygen vacancies became mobile. The electric field "swept" the oxygen vacancies towards the film's top surface, creating an n-type semiconductor in that portion of the film, while the immobile calcium ions created a p-type semiconductor in the bottom portion. Reversing the direction of the electric field inverted the n-type and p-type semiconductor regions, and a moderate field erased them.

"It is the same principle as in a CMOS device where the application of a voltage serves as an on/off switch that controls electron transport properties and changes electrical resistance from high (insulator) to low (conductor)," said Ramesh.

Whereas a typical CMOS device features an on/off switching ratio (the difference between resistance and non-resistance to electrical current) of about one million, Ramesh and his group achieved an on/off switching ratio of about a thousand in their calcium-doped bismuth ferrite films. While this ratio is sufficient for device operation and double the best ratio achieved with magnetic fields, Chan-Ho Yang, lead author on this Nature Materials paper and a post-doc in Ramesh's group says it can be improved.

"To make the ON state more conductive, we have many ideas to try such as different calcium-doping ratios, different strain states, different growth conditions, and eventually different compounds using the same idea," Yang said.

A year ago, Ramesh and his group demonstrated that an electric field could be used to control ferromagnetism in a non-doped bismuth ferrite film. (See Nature Materials, "Electric-field control of local ferromagnetism using a magnetoelectric multiferroic" by Ramesh, et. al)

With this new demonstration that the combination of doping and an applied electric field can change the insulating-conducting state of a multiferroic, he and his colleagues have shown one way forward in adapting multiferroics to such phenomena as colossal magnetoresistance, high temperature superconductivity and SQUID-type magnetic field detectors as well as spintronics.

Said Yang, "Oxides such as bismuth ferrite are abundant and display many exotic properties including high-temperature superconductivity and colossal magnetoresistance, but they have not been used much in real applications because it has been so difficult to control defects, especially, oxygen vacancies. Our observations suggest a general technique to make oxygen vacancy defects controllable."

Much of the work in this latest study by Ramesh and his group was carried out at Berkeley Lab's Advanced Light Source (ALS), on the PEEM2 microscope. PEEM, which stands for PhotoEmission Electron Microscopy, is an ideal technique for studying ferro magnetic and antimagnetic domains, and PEEM2, powered by a bend magnet at ALS beamline 7.3.1.1, is one of the world's best instruments, able to resolve features only a few nanometers thick.

"Without the capabilities of PEEM2 our experiments would have been dead in the water," said Ramesh. "Andreas Scholl (who manages PEEM2) and his ALS team were an enormous help."

This research was primarily supported by the U.S. Department of Energy's Office of Science through its Basic Energy Sciences program.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>