Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inspired by Nature, Researchers Create Tougher Metal Materials

03.07.2014

Drawing inspiration from the structure of bones and bamboo, researchers have found that by gradually changing the internal structure of metals they can make stronger, tougher materials that can be customized for a wide variety of applications – from body armor to automobile parts.

“If you looked at metal under a microscope you’d see that it is composed of millions of closely-packed grains,” says Yuntian Zhu, a professor of materials science and engineering at NC State and senior author of two papers on the new work. “The size and disposition of those grains affect the metal’s physical characteristics.”


This image illustrates the gradient structure concept. Click to enlarge. Image credit: Yuntian Zhu.

“Having small grains on the surface makes the metal harder, but also makes it less ductile – meaning it can’t be stretched very far without breaking,” says Xiaolei Wu, a professor of materials science at the Chinese Academy of Sciences’ Institute of Mechanics, and lead author of the two papers.

“But if we gradually increase the size of the grains lower down in the material, we can make the metal more ductile. You see similar variation in the size and distribution of structures in a cross-section of bone or a bamboo stalk. In short, the gradual interface of the large and small grains makes the overall material stronger and more ductile, which is a combination of characteristics that is unattainable in conventional materials.

“We call this a ‘gradient structure,’ and you can use this technique to customize a metal’s characteristics,” Wu adds.

Wu and Zhu collaborated on research that tested the gradient structure concept in a variety of metals, including copper, iron, nickel and stainless steel. The technique improved the metal’s properties in all of them.

The research team also tested the new approach in interstitial free (IF) steel, which is used in some industrial applications.

If conventional IF steel is made strong enough to withstand 450 megapascals (MPa) of stress, it has very low ductility – the steel can only be stretched to less than 5 percent of its length without breaking. That makes it unsafe. Low ductility means a material is susceptible to catastrophic failure, such as suddenly snapping in half. Highly ductile materials can stretch, meaning they’re more likely to give people time to respond to a problem before total failure.

By comparison, the researchers created an IF steel with a gradient structure; it was strong enough to handle 500 MPa and ductile enough to stretch to 20 percent of its length before failing.

The researchers are also interested in using the gradient structure approach to make materials more resistant to corrosion, wear and fatigue.

“We think this is an exciting new area for materials research because it has a host of applications and it can be easily and inexpensively incorporated into industrial processes,” Wu says.

The work is described in two recently published papers: “Synergetic Strengthening by Gradient Structure,” which was published online July 2 in Materials Research Letters, and “Extraordinary strain hardening by gradient structure,” which is published in Proceedings of the National Academy of Sciences. The work was supported by the U.S. Army Research Office under grants W911NF-09-1-0427 and W911QX-08-C-0083.

-shipman-

Note to Editors: The study abstracts follow.

“Synergetic Strengthening by Gradient Structure”

Authors: X.L. Wu, P. Jiang, L. Chen, J.F. Zhang and F.P. Yuan, Chinese Academy of Sciences; Y.T. Zhu, North Carolina State University

Published: online July 2, Materials Research Letters

DOI: 10.1080/21663831.2014.935821

Abstract: Gradient structures are characterized with a systematic change in microstructures on a macroscopic scale. Here we report that gradient structures in engineering materials such as metals produce an intrinsic synergetic strengthening, which is much higher than the sum of separate gradient layers. This is caused by macroscopic stress gradient and the bi-axial stress generated by mechanical incompatibility between different layers. This finding represents a new mechanism for strengthening that exploits the principles of both mechanics and materials science. It may provide for a new strategy for designing material structures with superior properties.

“Extraordinary strain hardening by gradient structure”

Authors: X.L. Wu, P. Jiang, L. Chen and F.P. Yuan, Chinese Academy of Sciences; Y.T. Zhu, North Carolina State University

Published: online May 5, Proceedings of the National Academy of Sciences

DOI: 10.1073/pnas.1324069111

Abstract: Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures gradually change from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multi-axial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby accumulation and interaction of dislocations are promoted, resulting in an extra hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a novel strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.

Matt Shipman | Eurek Alert!
Further information:
http://news.ncsu.edu/releases/zhu-gradient-structure-2014/

Further reports about: Bamboo COPPER Iron Metal conventional materials materials stainless steel structures technique

More articles from Materials Sciences:

nachricht OSU researchers prove magnetism can control heat, sound
29.05.2015 | Ohio Supercomputer Center

nachricht Engineering phase changes in nanoparticle arrays
26.05.2015 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>