Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Inspired by Nature, Researchers Create Tougher Metal Materials


Drawing inspiration from the structure of bones and bamboo, researchers have found that by gradually changing the internal structure of metals they can make stronger, tougher materials that can be customized for a wide variety of applications – from body armor to automobile parts.

“If you looked at metal under a microscope you’d see that it is composed of millions of closely-packed grains,” says Yuntian Zhu, a professor of materials science and engineering at NC State and senior author of two papers on the new work. “The size and disposition of those grains affect the metal’s physical characteristics.”

This image illustrates the gradient structure concept. Click to enlarge. Image credit: Yuntian Zhu.

“Having small grains on the surface makes the metal harder, but also makes it less ductile – meaning it can’t be stretched very far without breaking,” says Xiaolei Wu, a professor of materials science at the Chinese Academy of Sciences’ Institute of Mechanics, and lead author of the two papers.

“But if we gradually increase the size of the grains lower down in the material, we can make the metal more ductile. You see similar variation in the size and distribution of structures in a cross-section of bone or a bamboo stalk. In short, the gradual interface of the large and small grains makes the overall material stronger and more ductile, which is a combination of characteristics that is unattainable in conventional materials.

“We call this a ‘gradient structure,’ and you can use this technique to customize a metal’s characteristics,” Wu adds.

Wu and Zhu collaborated on research that tested the gradient structure concept in a variety of metals, including copper, iron, nickel and stainless steel. The technique improved the metal’s properties in all of them.

The research team also tested the new approach in interstitial free (IF) steel, which is used in some industrial applications.

If conventional IF steel is made strong enough to withstand 450 megapascals (MPa) of stress, it has very low ductility – the steel can only be stretched to less than 5 percent of its length without breaking. That makes it unsafe. Low ductility means a material is susceptible to catastrophic failure, such as suddenly snapping in half. Highly ductile materials can stretch, meaning they’re more likely to give people time to respond to a problem before total failure.

By comparison, the researchers created an IF steel with a gradient structure; it was strong enough to handle 500 MPa and ductile enough to stretch to 20 percent of its length before failing.

The researchers are also interested in using the gradient structure approach to make materials more resistant to corrosion, wear and fatigue.

“We think this is an exciting new area for materials research because it has a host of applications and it can be easily and inexpensively incorporated into industrial processes,” Wu says.

The work is described in two recently published papers: “Synergetic Strengthening by Gradient Structure,” which was published online July 2 in Materials Research Letters, and “Extraordinary strain hardening by gradient structure,” which is published in Proceedings of the National Academy of Sciences. The work was supported by the U.S. Army Research Office under grants W911NF-09-1-0427 and W911QX-08-C-0083.


Note to Editors: The study abstracts follow.

“Synergetic Strengthening by Gradient Structure”

Authors: X.L. Wu, P. Jiang, L. Chen, J.F. Zhang and F.P. Yuan, Chinese Academy of Sciences; Y.T. Zhu, North Carolina State University

Published: online July 2, Materials Research Letters

DOI: 10.1080/21663831.2014.935821

Abstract: Gradient structures are characterized with a systematic change in microstructures on a macroscopic scale. Here we report that gradient structures in engineering materials such as metals produce an intrinsic synergetic strengthening, which is much higher than the sum of separate gradient layers. This is caused by macroscopic stress gradient and the bi-axial stress generated by mechanical incompatibility between different layers. This finding represents a new mechanism for strengthening that exploits the principles of both mechanics and materials science. It may provide for a new strategy for designing material structures with superior properties.

“Extraordinary strain hardening by gradient structure”

Authors: X.L. Wu, P. Jiang, L. Chen and F.P. Yuan, Chinese Academy of Sciences; Y.T. Zhu, North Carolina State University

Published: online May 5, Proceedings of the National Academy of Sciences

DOI: 10.1073/pnas.1324069111

Abstract: Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures gradually change from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multi-axial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby accumulation and interaction of dislocations are promoted, resulting in an extra hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a novel strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.

Matt Shipman | Eurek Alert!
Further information:

Further reports about: Bamboo COPPER Iron Metal conventional materials materials stainless steel structures technique

More articles from Materials Sciences:

nachricht ORNL researchers find 'greener' way to assemble materials for solar applications
06.10.2015 | DOE/Oak Ridge National Laboratory

nachricht Extending a Battery's Lifetime with Heat
05.10.2015 | American Institute of Physics (AIP)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

07.10.2015 | Life Sciences

Research on clean diesel engine technology: Reduce nitrogen oxide emissions and consumption

07.10.2015 | Machine Engineering

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

More VideoLinks >>>