Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inorganic materials display massive and instantaneous swelling and shrinkage

02.04.2013
The first observation of massive swelling and shrinkage of inorganic layered materials like a biological cell provides insights into the production of two-dimensional crystals.

Two-dimensional (2D) crystals have unique properties that may be useful for a range of applications. Consequently there is high interest in the mechanism for producing 2D crystals by exfoliating materials with layered structures.

Now researchers in Japan have reported an unusual phenomenon that layered materials undergo drastic swelling without breaking into separate 2D crystal layers. “The findings demonstrate important implications for and chemical insight into the exfoliating process,” say the researchers.

Certain ions or solvents can infiltrate materials with layered structures. This ‘intercalation’ sometimes causes excessive swelling and ultimately exfoliation into separate layers. The process of exfoliation has been studied in a number of materials including graphite, oxides, and hydroxides among others. In all these materials, exfoliation into separate layers occurs after swelling of less than several nanometres, which raises difficulties in analysis of the swelling stage, and hence the exfoliation mechanism as a whole.

Now Takayoshi Sasaki and colleagues at the International Center for Materials Nanoarchitectonics at the National Institute for Materials Science and the Fukuoka Institute of Technology in Japan have realized up to 100-fold swelling of layered protonic oxides, otherwise known as solid acids, without exfoliation, by exposure to an aqueous amine solution. Adding HCl reduced them to their original size. Notably, n the process more than3000 atomic sheets, which comprise of the starting crystal, instantly move apart and reassemble like shuffled poker cards

Unlike previously reported swelling or exfoliation, which swell far less before exfoliation, the swollen structures produced by exposure to the amine solution remained stable even when shaken. The researchers explain the stability using molecular dynamics calculations. “Unlike the random H2O in the previously reported swollen phases that could be easily exfoliated, long-range structuring of the H2O molecules in the highly swollen structure was confirmed using first-principle calculations.” The observations also provide important insights into the physics of these systems.

Contact information
International Center for Materials Nanoarchitectonics(WPI-MANA)
1-1 Namiki, Tsukuba-shi, Ibaraki, 305-0044 Japan
Email: SASAKI.Takayoshinims.go.jp
Telephone: +81-29-860-4313
Source: Research highlight from MANA, the International Center for Materials Nanoarchitectonics at NIMS, Tsukuba, Japan.

Journal information

Unusually stable ~100-fold reversible and instantaneous swelling of inorganic layered materials Fengxia Geng1, Renzhi Ma1, Akira Nakamura1, Kosho Akatsuka1, Yasuo Ebina1, Yusuke Yamauchi1, Nobuyoshi Miyamoto2, Yoshitaka Tateyama1 & Takayoshi Sasaki1, 2013 Nature Comm :doi:10.1038/ncomms2641

Affiliations
1. International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

2. Department of Life, Environment and Materials Science, Fukuoka Institute of Technology, Wajiro-Higashi, Higashi-ku, Fukuoka 811-0295, Japan

Adarsh Sandhu | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>