Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen released to fuel cell more quickly when stored in metal nanoparticles

30.09.2011
Researchers from TU Delft and VU University Amsterdam in the Netherlands have demonstrated that the size of a metal alloy nanoparticle influences the speed with which hydrogen gas is released when stored in a metal hydride.

The smaller the size of the nanoparticle, the greater the speed at which the hydrogen gas makes its way to the fuel cell. The researchers publish their findings in the October issue of the scientific journal Advanced Energy Materials.

Hydrogen heaven

On 27 September Dutch Minister of Infrastructure and the Environment, Ms Schultz van Haegen, announced she will earmark 5 million Euros to stimulate hydrogen transport in the Netherlands. According to the Minister the Netherlands and neighbouring countries have all it takes to become a 'hydrogen heaven'. In July 2011, the German car manufacturer Daimler announced its intention to build twenty new hydrogen fuelling stations along Germany's motorways. Hydrogen is back on the agenda. Hydrogen gas is currently stored in a vehicle fuel tank at 700 bar pressure. Fuelling stations thus require high-pressure pumps to fill these tanks and these systems consume a lot of energy.

Hydrogen storage

There are thus good reasons for finding alternative hydrogen storage techniques. Hydrogen can be absorbed in high densities in metals such as magnesium, without the need for high pressure. However, the disadvantage is that releasing the hydrogen again is a very difficult and very slow process. One way of speeding up the release of the hydrogen is to use magnesium nanoparticles that are fixed in a matrix to prevent them from aggregating.

Nanoparticles in a matrix

Professor of Materials for Energy Conversion and Storage, Bernard Dam, and his colleagues at TU Delft and VU University Amsterdam have demonstrated experimentally that the interaction between the nanoparticles and the matrix can cause the hydrogen gas to be released faster. Using models consisting of thin layers of magnesium and titanium, they show how the pressure of the hydrogen being released from the magnesium increases as the layers become thinner. This means that it indeed makes sense to store hydrogen in nanoparticles in a matrix. The choice of matrix determines to what extent the hydrogen desorption pressure increases. The researchers published their findings in the October 2011 edition of the scientific journal Advanced Energy Materials.

Efficient and affordable hydrogen storage techniques can play an important role in the large-scale adoption of hydrogen fuel cells. Bernard Dam foresees the development of hybrid vehicles that use batteries for short distances but switch to hydrogen for long distances: 'Your electric motor will be powered by batteries inside the city, and by hydrogen when you go further afield.'

The research was funded by the ACTS Sustainable Hydrogen Program of the Netherlands Organisation for Scientific Research.

Ineke Boneschansker | EurekAlert!
Further information:
http://www.tudelft.nl

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>