Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hunt for electron holes

31.10.2012
A molecular glance on solar water splitting
Hydrogen production by solar water splitting in photoelectrochemical cells (PEC) has long been considered the holy grail of sustainable energy research. Iron oxide is a promising electrode material. An international team of researchers led by Empa, the Swiss Federal Laboratories for Materials Science and Technology, have now gained in-depth insights into the electronic structure of an iron oxide electrode – while it was in operation. This opens up new possibilities for an affordable hydrogen production from solar energy.

Hematite, the mineral form of iron oxide (or trivially, rust), is a promising anode material for photoelectro-chemical cells (PEC) because of its affordability, availability, high stability and good spectral match to the solar spectrum. Although it has the potential of a 15% solar-to-hydrogen energy conversion efficiency, its actual efficiency is lower than that of other metal oxides. This is due to hematite’s electronic structure, which only allows for ultrashort electron-hole excited-state lifetimes.

(Image source: iStock)

Helpful holes in hematite

Electrons are well-known (negative) charge carriers, indispensable in our daily lives, but they do not play this role alone. When an electron leaves its assigned place, it leaves behind a hole that can effectively behave like a positive charge carrier, provided that the electron and hole remain separated and do not recombine. In modern semiconductor electronics, holes are important charge carriers, without which devices like batteries, capacitors, fuel cells, solar cells, and PEC could not operate. PEC electrodes typically form electron-hole pairs when struck by sunlight. In PEC photoanodes made of hematite, the generated holes must diffuse to the semiconductor surface, where they can oxidize water and form oxygen.

However, the electronic structure of hematite is such that the photo-generated holes tend to recombine with the electrons before reaching the surface. As a result, the resulting photocurrent is limited by the relatively few holes that actually do reach the surface. Recent efforts to optimize the nanostructured morphologies of hematite photoanodes have led to significant improvements in performance, but in spite of these efforts, the overall energy conversion efficiency in hematite remains at only about a third of its potential. An intelligent management of electron and hole transport is, therefore, critical for a better materials performance.

In this context, a better understanding of hole states at the hematite surface has been the subject of much interest as well as debate. It has long been suspected that in hematite, two types of holes with different water-splitting power are formed. The existence of different types of holes with disparate reactivity toward water oxidation has broad implications for the ultimate performance of hematite. But it is quite difficult to detect such holes, and studies of this phenomenon are complicated by numerous technical constraints. Moreover, the holes are transitional and quite elusive.

Not all holes are created equal

In a recent study published in the «Journal of Physical Chemistry C», Empa researchers Artur Braun and Debajeet Bora and their colleagues from EPF Lausanne, the University of Basel, China and the US studied the nature of photoelectrically generated holes in a PEC that had been specially designed for gathering data while the cell is in operation («operando»). They recorded soft X-ray absorption spectra under simulated sunlight and in the dark and identified two new spectral signatures corresponding to two different hole transitions, an O 2p hole transition into the charge-transfer band and an Fe 3d-type hole transition into the upper Hubbard band. According to Braun, this is the first time that the electronic structure of a PEC photoanode has been analyzed while it was in real water splitting action, i.e. in contact with electrolyte, under anodic bias and illuminated by visible light. «The preparations for this extremely complex experiment took us three years», says Braun. «After all, soft X-ray spectroscopy works only in ultra-high vacuum, and photoelectrochemistry works only in liquids. Combining both was technically a great advancement. Yet, I would say we were very fortunate to discover the two electron holes in an operating PEC.»

Schematic drawing of a photoelectrochemical cell with a 30 nm thin hematite photoanode (orange), properly wired, in contact with electrolyte (blue), illuminated with visible light, separated by a 100 nm thin membrane from the vacuum environment, and analyzed in situ with soft X-rays in the ALS synchrotron.

Their groundbreaking experiment demonstrated the formation of two different types of electron holes at the semiconductor-liquid interface under the exact conditions, at which the photocurrent arises. Quantitative analysis of their spectral signatures revealed that both types of holes, contrary to earlier speculation and historical perception, contribute to the resulting photocurrent. «This is a milestone in the understanding of solar water splitting and encouraging news for researchers worldwide who are working to optimize hematite for PEC photoanodes», says Braun.

Artur Braun | EurekAlert!
Further information:
http://www.empa.ch

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>