Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene flexes its electronic muscles

01.07.2015

Rice-led researchers calculate electrical properties of carbon cones, other shapes

Flexing graphene may be the most basic way to control its electrical properties, according to calculations by theoretical physicists at Rice University and in Russia.


Researchers at Rice University and in Moscow used theoretical cones to show the unique electronic properties of flexed graphene.

Credit: Yakobson Group/Rice University

The Rice lab of Boris Yakobson in collaboration with researchers in Moscow found the effect is pronounced and predictable in nanocones and should apply equally to other forms of graphene.

The researchers discovered it may be possible to access what they call an electronic flexoelectric effect in which the electronic properties of a sheet of graphene can be manipulated simply by twisting it a certain way.

The work will be of interest to those considering graphene elements in flexible touchscreens or memories that store bits by controlling electric dipole moments of carbon atoms, the researchers said.

Perfect graphene - an atom-thick sheet of carbon - is a conductor, as its atoms' electrical charges balance each other out across the plane. But curvature in graphene compresses the electron clouds of the bonds on the concave side and stretches them on the convex side, thus altering their electric dipole moments, the characteristic that controls how polarized atoms interact with external electric fields.

The researchers who published their results this month in the American Chemical Society's Journal of Physical Chemistry Letters discovered they could calculate the flexoelectric effect of graphene rolled into a cone of any size and length.

The researchers used density functional theory to compute dipole moments for individual atoms in a graphene lattice and then figure out their cumulative effect. They suggested their technique could be used to calculate the effect for graphene in other more complex shapes, like wrinkled sheets or distorted fullerenes, several of which they also analyzed.

"While the dipole moment is zero for flat graphene or cylindrical nanotubes, in between there is a family of cones, actually produced in laboratories, whose dipole moments are significant and scale linearly with cone length," Yakobson said.

Carbon nanotubes, seamless cylinders of graphene, do not display a total dipole moment, he said. While not zero, the vector-induced moments cancel each other out.

That's not so with a cone, in which the balance of positive and negative charges differ from one atom to the next, due to slightly different stresses on the bonds as the diameter changes. The researchers noted atoms along the edge also contribute electrically, but analyzing two cones docked edge-to-edge allowed them to cancel out, simplifying the calculations.

Yakobson sees potential uses for the newly found characteristic. "One possibly far-reaching characteristic is in the voltage drop across a curved sheet," he said. "It can permit one to locally vary the work function and to engineer the band-structure stacking in bilayers or multiple layers by their bending. It may also allow the creation of partitions and cavities with varying electrochemical potential, more 'acidic' or 'basic,' depending on the curvature in the 3-D carbon architecture."

###

Co-authors are Alexander Kvashnin, a graduate student at the Moscow Institute of Physics and Technology and a researcher at the Technological Institute of Superhard and Novel Carbon Materials, and Pavel Sorokin, who has appointments at the Technological Institute of Superhard and Novel Carbon Materials and the National University of Science and Technology, Moscow. Both are former members of the Yakobson Group at Rice. Yakobson is Rice's Karl F. Hasselmann Professor of Materials Science and NanoEngineering, a professor of chemistry and a member of Rice's Richard E. Smalley Institute for Nanoscale Science and Technology.

The Russian Federation, Moscow State University, the Russian Academy of Sciences and the Air Force Office of Scientific Research's Multidisciplinary University Research Initiative supported the research. Work at Rice was supported by the Air Force Office of Scientific Research and the National Science Foundation.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.5b01041

This news release can be found online at http://news.rice.edu/2015/06/30/graphene-flexes-its-electronic-muscles-2/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Yakobson Research Group: http://biygroup.blogs.rice.edu

Rice Department of Materials Science and NanoEngineering: http://msne.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked among some of the top schools for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

Further reports about: Air Materials Science Russian Science across characteristic dipole moment graphene muscles properties

More articles from Materials Sciences:

nachricht Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells
22.11.2017 | University of California - San Diego

nachricht Fine felted nanotubes: CAU research team develops new composite material made of carbon nanotubes
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>