Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fabrication of Mosaic Nanofilters for Molecular Transport and Separation of Macromolecules

10.01.2011
The separation of proteins into relatively homogeneous groups and sizes has been very important in biopharmaceuticals and medicines. Researchers at NIMS have fabricated tight mosaic cage silica nanotubes inside anodic alumina membranes as a promising candidate nanofilter for high-speed size-exclusion separation of high concentration macromolecules.

A team led by Dr. Sherif El-Safty, Exploratory Materials Research Laboratory for Energy and Environment, National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda), fabricated tight mosaic cage silica nanotubes (NTs) inside anodic alumina membranes (AAM) as a promising candidate nanofilter for high-speed (within several seconds) size-exclusion separation of high concentration macromolecules.

To date, separation of proteins into relatively homogeneous groups and sizes has been very important in biopharmaceuticals and medicines. From the practical viewpoint, the requirements for these applications include easy scaling-up, fast separation, suitability for high production volumes, and low cost. Technically, the design of extremely robust filter membranes without formation of air gaps among membrane nanochannels is a remaining challenge, as pore gaps not only reduce the potential of size-exclusion nanofiltration systems, but also limit the long-term storage stability of NTs, making storage difficult even for a month.

For practical control of mosaic nanofilter membranes, a general approach based on densely engineered three-dimensional (3D) mesocage structures inside silica NTs was adopted. In this design, multifunctional surface coating of the pore channels of the AAM facilitated production of extremely robust constructed sequences of membranes as “real nanofilters” without “detachment pores” (air gaps) between the fabricated nanotubes inside the AAM. The approach used by the NIMS team is ideal for constructing tubular-structured architectures inside membranes with vertical alignment, open surfaces of top-bottom ends, multidirectional (3D) pore connectivity, and stability, which are promising for application to nanofilter systems.

The key to this development was the fact that the nanofilter system efficiently separates macromolecules such as proteins of various sizes over a wide, adjustable range of concentrations. Although conventional processes require as much as 12 hours or more, this technique provides a rapid filtration process that achieves filtration in seconds, despite the blocking effect of the proteins during the filtration process.

The intrinsic properties of the NIMS design (shelf-life or long-term stability, separation efficiency, reusability) are important advantages in comparison with the conventional protein nanofilter techniques used to date. Such advantages will be key to the development of a fabrication approach with the potential to become the optimal method for the design of nanofilters for filtration and molecular transport of multiple species.

The results of this research demonstrated that the NIMS approach offers a time- and cost-efficient alternative tool to current macromolecule analysis methods. This development also offers new insights into control design of devices in the fields of electronics, sensors, and other nanotechnologies.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2010/12/p201012100.html
http://www.researchsea.com

Further reports about: Materials Science Molecular Target Mosaic NIMS Nanofilters Separation macromolecules

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>