Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fabrication of Mosaic Nanofilters for Molecular Transport and Separation of Macromolecules

10.01.2011
The separation of proteins into relatively homogeneous groups and sizes has been very important in biopharmaceuticals and medicines. Researchers at NIMS have fabricated tight mosaic cage silica nanotubes inside anodic alumina membranes as a promising candidate nanofilter for high-speed size-exclusion separation of high concentration macromolecules.

A team led by Dr. Sherif El-Safty, Exploratory Materials Research Laboratory for Energy and Environment, National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda), fabricated tight mosaic cage silica nanotubes (NTs) inside anodic alumina membranes (AAM) as a promising candidate nanofilter for high-speed (within several seconds) size-exclusion separation of high concentration macromolecules.

To date, separation of proteins into relatively homogeneous groups and sizes has been very important in biopharmaceuticals and medicines. From the practical viewpoint, the requirements for these applications include easy scaling-up, fast separation, suitability for high production volumes, and low cost. Technically, the design of extremely robust filter membranes without formation of air gaps among membrane nanochannels is a remaining challenge, as pore gaps not only reduce the potential of size-exclusion nanofiltration systems, but also limit the long-term storage stability of NTs, making storage difficult even for a month.

For practical control of mosaic nanofilter membranes, a general approach based on densely engineered three-dimensional (3D) mesocage structures inside silica NTs was adopted. In this design, multifunctional surface coating of the pore channels of the AAM facilitated production of extremely robust constructed sequences of membranes as “real nanofilters” without “detachment pores” (air gaps) between the fabricated nanotubes inside the AAM. The approach used by the NIMS team is ideal for constructing tubular-structured architectures inside membranes with vertical alignment, open surfaces of top-bottom ends, multidirectional (3D) pore connectivity, and stability, which are promising for application to nanofilter systems.

The key to this development was the fact that the nanofilter system efficiently separates macromolecules such as proteins of various sizes over a wide, adjustable range of concentrations. Although conventional processes require as much as 12 hours or more, this technique provides a rapid filtration process that achieves filtration in seconds, despite the blocking effect of the proteins during the filtration process.

The intrinsic properties of the NIMS design (shelf-life or long-term stability, separation efficiency, reusability) are important advantages in comparison with the conventional protein nanofilter techniques used to date. Such advantages will be key to the development of a fabrication approach with the potential to become the optimal method for the design of nanofilters for filtration and molecular transport of multiple species.

The results of this research demonstrated that the NIMS approach offers a time- and cost-efficient alternative tool to current macromolecule analysis methods. This development also offers new insights into control design of devices in the fields of electronics, sensors, and other nanotechnologies.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2010/12/p201012100.html
http://www.researchsea.com

Further reports about: Materials Science Molecular Target Mosaic NIMS Nanofilters Separation macromolecules

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>