Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fabrication of Mosaic Nanofilters for Molecular Transport and Separation of Macromolecules

10.01.2011
The separation of proteins into relatively homogeneous groups and sizes has been very important in biopharmaceuticals and medicines. Researchers at NIMS have fabricated tight mosaic cage silica nanotubes inside anodic alumina membranes as a promising candidate nanofilter for high-speed size-exclusion separation of high concentration macromolecules.

A team led by Dr. Sherif El-Safty, Exploratory Materials Research Laboratory for Energy and Environment, National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda), fabricated tight mosaic cage silica nanotubes (NTs) inside anodic alumina membranes (AAM) as a promising candidate nanofilter for high-speed (within several seconds) size-exclusion separation of high concentration macromolecules.

To date, separation of proteins into relatively homogeneous groups and sizes has been very important in biopharmaceuticals and medicines. From the practical viewpoint, the requirements for these applications include easy scaling-up, fast separation, suitability for high production volumes, and low cost. Technically, the design of extremely robust filter membranes without formation of air gaps among membrane nanochannels is a remaining challenge, as pore gaps not only reduce the potential of size-exclusion nanofiltration systems, but also limit the long-term storage stability of NTs, making storage difficult even for a month.

For practical control of mosaic nanofilter membranes, a general approach based on densely engineered three-dimensional (3D) mesocage structures inside silica NTs was adopted. In this design, multifunctional surface coating of the pore channels of the AAM facilitated production of extremely robust constructed sequences of membranes as “real nanofilters” without “detachment pores” (air gaps) between the fabricated nanotubes inside the AAM. The approach used by the NIMS team is ideal for constructing tubular-structured architectures inside membranes with vertical alignment, open surfaces of top-bottom ends, multidirectional (3D) pore connectivity, and stability, which are promising for application to nanofilter systems.

The key to this development was the fact that the nanofilter system efficiently separates macromolecules such as proteins of various sizes over a wide, adjustable range of concentrations. Although conventional processes require as much as 12 hours or more, this technique provides a rapid filtration process that achieves filtration in seconds, despite the blocking effect of the proteins during the filtration process.

The intrinsic properties of the NIMS design (shelf-life or long-term stability, separation efficiency, reusability) are important advantages in comparison with the conventional protein nanofilter techniques used to date. Such advantages will be key to the development of a fabrication approach with the potential to become the optimal method for the design of nanofilters for filtration and molecular transport of multiple species.

The results of this research demonstrated that the NIMS approach offers a time- and cost-efficient alternative tool to current macromolecule analysis methods. This development also offers new insights into control design of devices in the fields of electronics, sensors, and other nanotechnologies.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2010/12/p201012100.html
http://www.researchsea.com

Further reports about: Materials Science Molecular Target Mosaic NIMS Nanofilters Separation macromolecules

More articles from Materials Sciences:

nachricht Polymer-graphene nanocarpets to electrify smart fabrics
18.04.2018 | Tomsk Polytechnic University

nachricht New capabilities at NSLS-II set to advance materials science
18.04.2018 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>