Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expert discovers simple method of dealing with harmful radioactive iodine

25.05.2011
A novel way to immobilise radioactive forms of iodine using a microwave, has been discovered by an expert at the University of Sheffield.

Iodine radioisotopes are produced by fission of uranium fuel in a nuclear reactor. Radioactive iodine is of concern because it is highly mobile in the environment and selective uptake by the thyroid gland can pose a significant cancer risk following long term exposure.

Furthermore, iodine-129, which is a type of radioactive iodine, has an extremely long half life of 15.7 million years, so is one of the most significant long term hazards faced by the population due to its emission during the geological disposal of nuclear waste.

Professor Neil Hyatt, from the University´s Department of Materials Science and Engineering, has now found a way of locking up iodine radioisotopes in a durable, solid material suitable for ultimate disposal, like lead iodovanadinite(Pb5(VO4)3I). The research, which was published in the Journal of Nuclear Materials, demonstrates how his simple, inexpensive and rapid method can be done at atmospheric pressure.

Professor Hyatt and his team created a solid material for immobilisation of iodine with the formula Pb5(VO4)3I, by heating a mixture of lead iodide, lead oxide and vanadium oxide.

Previously, this has only been achieved using high pressure and a sealed container, because iodine is volatilised at high temperature. However, using the knowledge that vanadium is a good absorber of microwaves at 2.45 GHz – the frequency used in domestic microwave ovens – the team were able to heat the mixture of chemicals in a microwave oven to produce Pb5(VO4)3I in about three minutes.

The key to the method´s success is that Pb5(VO4)3I is a poor absorber of 2.45 GHz microwaves, so once this is formed, the sample cannot absorb microwaves, so the temperature does not get high enough for the iodine to volatilise.

Iodine-131 was the harmful gas emitted from the Fukushima power plant in Japan following the earthquake and tsunami last month, and was a significant contributor to the health effects from open-air atomic bomb testing in the 1950s, and was also emitted during the Chernobyl disaster. It is hoped the new research will reduce the public health impact associated with the release of radioactive iodine to the environment by providing a simple and inexpensive method of immobilisation in a solid material, which could be rapidly deployed in an accident scenario.

Professor Neil Hyatt, said: "In spent nuclear fuel, the iodine is not immobilised, so once the containment is breached it simply gets dispersed. At present, iodine-129 released by nuclear fuel reprocessing is discharged direct to the Irish Sea off the coast of Sellafield. Substantial quantities of this radioisotope were also released into the sea off the coast of Japan in the Fukushima incident. Our new method offers a way of safely and rapidly containing this radionuclide, reducing the potential long term impact on human health from discharge to the environment."

Shemina Davis | EurekAlert!
Further information:
http://www.sheffield.ac.uk

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>