Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expert discovers simple method of dealing with harmful radioactive iodine

25.05.2011
A novel way to immobilise radioactive forms of iodine using a microwave, has been discovered by an expert at the University of Sheffield.

Iodine radioisotopes are produced by fission of uranium fuel in a nuclear reactor. Radioactive iodine is of concern because it is highly mobile in the environment and selective uptake by the thyroid gland can pose a significant cancer risk following long term exposure.

Furthermore, iodine-129, which is a type of radioactive iodine, has an extremely long half life of 15.7 million years, so is one of the most significant long term hazards faced by the population due to its emission during the geological disposal of nuclear waste.

Professor Neil Hyatt, from the University´s Department of Materials Science and Engineering, has now found a way of locking up iodine radioisotopes in a durable, solid material suitable for ultimate disposal, like lead iodovanadinite(Pb5(VO4)3I). The research, which was published in the Journal of Nuclear Materials, demonstrates how his simple, inexpensive and rapid method can be done at atmospheric pressure.

Professor Hyatt and his team created a solid material for immobilisation of iodine with the formula Pb5(VO4)3I, by heating a mixture of lead iodide, lead oxide and vanadium oxide.

Previously, this has only been achieved using high pressure and a sealed container, because iodine is volatilised at high temperature. However, using the knowledge that vanadium is a good absorber of microwaves at 2.45 GHz – the frequency used in domestic microwave ovens – the team were able to heat the mixture of chemicals in a microwave oven to produce Pb5(VO4)3I in about three minutes.

The key to the method´s success is that Pb5(VO4)3I is a poor absorber of 2.45 GHz microwaves, so once this is formed, the sample cannot absorb microwaves, so the temperature does not get high enough for the iodine to volatilise.

Iodine-131 was the harmful gas emitted from the Fukushima power plant in Japan following the earthquake and tsunami last month, and was a significant contributor to the health effects from open-air atomic bomb testing in the 1950s, and was also emitted during the Chernobyl disaster. It is hoped the new research will reduce the public health impact associated with the release of radioactive iodine to the environment by providing a simple and inexpensive method of immobilisation in a solid material, which could be rapidly deployed in an accident scenario.

Professor Neil Hyatt, said: "In spent nuclear fuel, the iodine is not immobilised, so once the containment is breached it simply gets dispersed. At present, iodine-129 released by nuclear fuel reprocessing is discharged direct to the Irish Sea off the coast of Sellafield. Substantial quantities of this radioisotope were also released into the sea off the coast of Japan in the Fukushima incident. Our new method offers a way of safely and rapidly containing this radionuclide, reducing the potential long term impact on human health from discharge to the environment."

Shemina Davis | EurekAlert!
Further information:
http://www.sheffield.ac.uk

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>