Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expert discovers simple method of dealing with harmful radioactive iodine

25.05.2011
A novel way to immobilise radioactive forms of iodine using a microwave, has been discovered by an expert at the University of Sheffield.

Iodine radioisotopes are produced by fission of uranium fuel in a nuclear reactor. Radioactive iodine is of concern because it is highly mobile in the environment and selective uptake by the thyroid gland can pose a significant cancer risk following long term exposure.

Furthermore, iodine-129, which is a type of radioactive iodine, has an extremely long half life of 15.7 million years, so is one of the most significant long term hazards faced by the population due to its emission during the geological disposal of nuclear waste.

Professor Neil Hyatt, from the University´s Department of Materials Science and Engineering, has now found a way of locking up iodine radioisotopes in a durable, solid material suitable for ultimate disposal, like lead iodovanadinite(Pb5(VO4)3I). The research, which was published in the Journal of Nuclear Materials, demonstrates how his simple, inexpensive and rapid method can be done at atmospheric pressure.

Professor Hyatt and his team created a solid material for immobilisation of iodine with the formula Pb5(VO4)3I, by heating a mixture of lead iodide, lead oxide and vanadium oxide.

Previously, this has only been achieved using high pressure and a sealed container, because iodine is volatilised at high temperature. However, using the knowledge that vanadium is a good absorber of microwaves at 2.45 GHz – the frequency used in domestic microwave ovens – the team were able to heat the mixture of chemicals in a microwave oven to produce Pb5(VO4)3I in about three minutes.

The key to the method´s success is that Pb5(VO4)3I is a poor absorber of 2.45 GHz microwaves, so once this is formed, the sample cannot absorb microwaves, so the temperature does not get high enough for the iodine to volatilise.

Iodine-131 was the harmful gas emitted from the Fukushima power plant in Japan following the earthquake and tsunami last month, and was a significant contributor to the health effects from open-air atomic bomb testing in the 1950s, and was also emitted during the Chernobyl disaster. It is hoped the new research will reduce the public health impact associated with the release of radioactive iodine to the environment by providing a simple and inexpensive method of immobilisation in a solid material, which could be rapidly deployed in an accident scenario.

Professor Neil Hyatt, said: "In spent nuclear fuel, the iodine is not immobilised, so once the containment is breached it simply gets dispersed. At present, iodine-129 released by nuclear fuel reprocessing is discharged direct to the Irish Sea off the coast of Sellafield. Substantial quantities of this radioisotope were also released into the sea off the coast of Japan in the Fukushima incident. Our new method offers a way of safely and rapidly containing this radionuclide, reducing the potential long term impact on human health from discharge to the environment."

Shemina Davis | EurekAlert!
Further information:
http://www.sheffield.ac.uk

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>