Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Energy Express focus issue: Thin-film photovoltaic materials and devices

14.09.2010
Developing renewable energy sources has never been more important, and solar photovoltaic (PV) technologies show great potential in this field. They convert direct sunlight into electricity with little impact on the environment.

This field is constantly advancing, developing technologies that can convert power more efficiently and at a lower cost. To highlight breakthroughs in this area, the editors of Energy Express, a bi-monthly supplement to Optics Express, the open-access journal of the Optical Society (OSA), today published a special Focus Issue on thin-film photovoltaic materials and devices. The issue is organized and edited by Bernard Kippelen, a professor at the Georgia Institute of Technology.

"Alternative and cost effective energy production technologies are an ever-present challenge to today's society." said Kippelen. "This Focus Issue will present contributions from leading research groups from around the world that illustrate both the depth and the breadth of the research conducted on optical materials and devices in a variety of emerging thin-film photovoltaic technologies."

Summary

Lowering the cost of energy produced by photovoltaic technologies can be achieved by developing new materials and devices architectures that lend themselves to streamlined, high-volume manufacturing with greatly reduced semiconductor consumption. Further advances in new materials and novel device architectures are essential for the increase of market share of PV thin-film technologies. This issue examines the materials already on the market, as well as the latest technologies and methods for harvesting sunlight.

Key Findings & Selected Papers

The following papers are some of the highlights of the Energy Express Focus Issue on Thin-film Photovoltaic Materials and Devices. All are included in volume 18, issue S3 and can be accessed online at http://www.opticsinfobase.org/ee.

A paper by Johanna Schmidtke gives a review of thin film photovoltaic devices and materials already on the market. The paper discusses recent dynamics in the on-grid PV market, as well as an overview of commercial thin-film silicon, cadmium telluride, copper indium gallium diselenide and organic PV modules. Johanna Schmidtke, Lux Research Inc. pp. A477. http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-103-A477

Research from the Risø National Laboratory for Sustainable Energy provides insight into the great potential and challenges of the latest photovoltaic technologies based on organic materials. The report provides an examination of the first trial of grid-connected polymer solar panels and also gives a detailed cost analysis. Andrew J. Medford, Mathilde R. Lilliedal, Mikkel Jørgensen, Dennis Aarø, Heinz Pakalski, Jan Fyenbo, and Frederik C. Krebs, the Risø National Laboratory for Sustainable Energy, Technical University of Denmark. pp. A272. http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-103-A272

A paper by University of Michigan researchers illustrates how optics can lead to creative new approaches to harvest sunlight more efficiently via novel tandem solar cell architectures. Using realistic material properties for organic absorbers, transport layers, metallic electrodes, and DBR coatings 17% power conversion efficiency can be reached. Brendan O'Connor, Denis Nothern, Kevin P. Pipe, and Max Shtein, Departments of Mechanical Engineering and Materials Science and Engineering, University of Michigan. pp. A432. http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-103-A432

Research from the University of Texas at Austin discusses an alternative to organic materials, inks or dispersions of inorganic nanocrystals that enable printing of inorganic semiconductors under moderate processing conditions. The paper describes such an approach using CuInSe2 nanocrystals and reports encouraging efficiencies based on ambient processing. This material system is environmentally friendlier than other semiconductor nanocrystal systems and facilitates incorporation of inexpensive solar cell in variety of applications. Vahid A. Akhavan, Matthew G. Panthani, Brian W. Goodfellow, Dariya K. Reid, and Brian A. Korgel, Department of Chemical Engineering and Texas Materials Institute and Center for Nano- and Molecular Science and Technology, University of Texas at Austin. pp. A411. http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-103-A411

About Energy Express

As a special bi-monthly supplement to Optics Express, Energy Express is dedicated to rapidly communicating new developments in optics for sustainable energy. Energy Express will have original research side-by-side with review articles written by the world's leading experts in the science and engineering of light and its impact on sustainable energy development, the environment, and green technologies. For more information, see: http://www.OpticsInfoBase.org/ee.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

Lyndsay Basista | EurekAlert!
Further information:
http://www.osa.org

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>