Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ductile materials for Arctic conditions

06.01.2015

The production of oil and gas at temperatures between 40 and 60 degrees below zero means that researchers must advance the development of materials that can withstand these harsh conditions.

The oil industry is heading north. It is said that 30 per cent of remaining gas, and 13 per cent of remaining oil, reserves are to be found in the Arctic. We're talking about billions.


In the even In Artic steel constructions must be able to withstand temperatures as low as minus 60 degrees. Photo: Ragnhild Lundmark Daae, NTNU

The Snøhvit and Goliat projects are being developed for operation in temperatures of minus 20 degrees. In the even harsher conditions further north, steel constructions must be able to withstand temperatures as low as minus 60 degrees. But our current materials are not tough enough, because when temperatures fall below minus 20 degrees, the steel becomes brittle and more likely to fracture.

Tests, tests and more tests

Senior researcher Odd Magne Akselsen is heading a group at SINTEF Materials and Chemistry whose aim is to enhance the fracture resistance of construction materials. The idea is to develop precise mathematical models, predict materials properties and make the necessary modifications. To achieve this they need a lot of information at both micro- and nannoscales.

"There are two factors", says Akselsen. "The ductility (fracture resistance) of a material is dramatically reduced when temperatures fall below zero", he says. "Moreover, steel plates used in platform construction have to be welded together. After welding, involving high rates of heating and cooling, it becomes easier for cracks to develop", he says.

– And just one crack is dangerous?

"A single crack can result in brittle fracture by which the material breaks in two in just a couple of seconds", says Akselsen. "Such fractures are unstable, impossible to predict and very dangerous – potentially resulting in catastrophic accidents.

In order to avert such hazards, the researchers are carrying out numerous tests involving the flexing and stretching of cracks inserted into welds, followed by the examination of small samples using an electron microscope.

Does a crack make a noise?

The researchers are currently testing a new technology that involves taking measurements using acoustic signals. They attach a sensor and sound heads to the samples while they deform and stretch them.

"We record a small signal when the crack begins to develop", says Akselsen. "It's like the sound of breaking glass.  We stop the test at the first indication of a sound, and put the sample under the microscope to find out where the signal has come from. Even though this may occur in a small grain just a few micrometres across, we enlarge everything to let us see where the microfracture was initiated", he says.

– And then?
"Yes, then we can find out why it happened, and then look into how we can make modifications to prevent it.", says Akselsen.

Shifting the ductility curve

Akselsen is a "greybeard" with extensive experience in the world of materials science. He is the enthusiastic senior scientist generating passion for the work among the younger aspiring researchers in his team.

He is now talking a lot about the "ductility" or "transition" curve which determines at what temperatures a material changes from being ductile to brittle.

"Somehow we have to find a way to shift this curve towards a lower temperature range", says Akselsen. "This is incredibly complex work, but we believe we're on the right track", he says.

It is a major advantage having NTNU participate in the project with a number of its Ph.D. and Master's students. Akselsen reveals that a female Master's student has recently succeeded in introducing a crack exactly where researchers wanted it in a sample of test material only a few micrometres across.

"This is incredibly valuable work", says Akselsen. "So now we know how the brittle phase will behave under deformation", he says. "Studying local strength and ductility properties at this level allows us to develop more accurate models which can be used to predict unwanted incidents", he explains.

Aluminium is also being tested

Aluminium will also be tested as part of this project to see if it can be adapted for use under Arctic conditions.

It can be used to construct accommodation modules, gangways and staircases installed on platforms. Because aluminium is lighter than steel, it can generate weight savings during the transport of subsea components from the mainland into Arctic waters.

There are many issues that remain unresolved. The researchers are well aware that improvements in quality will be needed when the oil industry starts to produce hydrocarbons north of the Goliat field.

"The lower temperatures mean that there is a risk that only 80 per cent of the strength of current steel products can be utilised", says Akselsen. "If we are to succeed in shifting the ductility curve down to 50 degrees below zero, basic materials must be modified to provide an adequate ductility margin", says Akselsen.

"Our task today is to consolidate our know-how and testing methods, and accumulate test results. This will be a valuable foundation which the oil and gas industry can use as a guide", he says.

http://www.sintef.com

Aase Dragland | AlphaGalileo

Further reports about: Arctic SINTEF conditions construction cracks fracture materials modifications temperatures

More articles from Materials Sciences:

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht Nature's toughest substances decoded
05.12.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>