Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ductile materials for Arctic conditions

06.01.2015

The production of oil and gas at temperatures between 40 and 60 degrees below zero means that researchers must advance the development of materials that can withstand these harsh conditions.

The oil industry is heading north. It is said that 30 per cent of remaining gas, and 13 per cent of remaining oil, reserves are to be found in the Arctic. We're talking about billions.


In the even In Artic steel constructions must be able to withstand temperatures as low as minus 60 degrees. Photo: Ragnhild Lundmark Daae, NTNU

The Snøhvit and Goliat projects are being developed for operation in temperatures of minus 20 degrees. In the even harsher conditions further north, steel constructions must be able to withstand temperatures as low as minus 60 degrees. But our current materials are not tough enough, because when temperatures fall below minus 20 degrees, the steel becomes brittle and more likely to fracture.

Tests, tests and more tests

Senior researcher Odd Magne Akselsen is heading a group at SINTEF Materials and Chemistry whose aim is to enhance the fracture resistance of construction materials. The idea is to develop precise mathematical models, predict materials properties and make the necessary modifications. To achieve this they need a lot of information at both micro- and nannoscales.

"There are two factors", says Akselsen. "The ductility (fracture resistance) of a material is dramatically reduced when temperatures fall below zero", he says. "Moreover, steel plates used in platform construction have to be welded together. After welding, involving high rates of heating and cooling, it becomes easier for cracks to develop", he says.

– And just one crack is dangerous?

"A single crack can result in brittle fracture by which the material breaks in two in just a couple of seconds", says Akselsen. "Such fractures are unstable, impossible to predict and very dangerous – potentially resulting in catastrophic accidents.

In order to avert such hazards, the researchers are carrying out numerous tests involving the flexing and stretching of cracks inserted into welds, followed by the examination of small samples using an electron microscope.

Does a crack make a noise?

The researchers are currently testing a new technology that involves taking measurements using acoustic signals. They attach a sensor and sound heads to the samples while they deform and stretch them.

"We record a small signal when the crack begins to develop", says Akselsen. "It's like the sound of breaking glass.  We stop the test at the first indication of a sound, and put the sample under the microscope to find out where the signal has come from. Even though this may occur in a small grain just a few micrometres across, we enlarge everything to let us see where the microfracture was initiated", he says.

– And then?
"Yes, then we can find out why it happened, and then look into how we can make modifications to prevent it.", says Akselsen.

Shifting the ductility curve

Akselsen is a "greybeard" with extensive experience in the world of materials science. He is the enthusiastic senior scientist generating passion for the work among the younger aspiring researchers in his team.

He is now talking a lot about the "ductility" or "transition" curve which determines at what temperatures a material changes from being ductile to brittle.

"Somehow we have to find a way to shift this curve towards a lower temperature range", says Akselsen. "This is incredibly complex work, but we believe we're on the right track", he says.

It is a major advantage having NTNU participate in the project with a number of its Ph.D. and Master's students. Akselsen reveals that a female Master's student has recently succeeded in introducing a crack exactly where researchers wanted it in a sample of test material only a few micrometres across.

"This is incredibly valuable work", says Akselsen. "So now we know how the brittle phase will behave under deformation", he says. "Studying local strength and ductility properties at this level allows us to develop more accurate models which can be used to predict unwanted incidents", he explains.

Aluminium is also being tested

Aluminium will also be tested as part of this project to see if it can be adapted for use under Arctic conditions.

It can be used to construct accommodation modules, gangways and staircases installed on platforms. Because aluminium is lighter than steel, it can generate weight savings during the transport of subsea components from the mainland into Arctic waters.

There are many issues that remain unresolved. The researchers are well aware that improvements in quality will be needed when the oil industry starts to produce hydrocarbons north of the Goliat field.

"The lower temperatures mean that there is a risk that only 80 per cent of the strength of current steel products can be utilised", says Akselsen. "If we are to succeed in shifting the ductility curve down to 50 degrees below zero, basic materials must be modified to provide an adequate ductility margin", says Akselsen.

"Our task today is to consolidate our know-how and testing methods, and accumulate test results. This will be a valuable foundation which the oil and gas industry can use as a guide", he says.

http://www.sintef.com

Aase Dragland | AlphaGalileo

Further reports about: Arctic SINTEF conditions construction cracks fracture materials modifications temperatures

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>