Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015

Surface Modification by Carboxyl Groups Suppressing Osteogenic Differentiation. Nanomaterials Paving the Way for Regenerative Medicine

Tissue Regeneration Materials Unit at MANA, NIMS successfully developed gold nanoparticles that have functional surfaces and act on osteogenic differentiation of stem cells.

Tissue Regeneration Materials Unit (Guoping Chen, Unit Director) at the International Center for Materials Nanoarchitectonics (MANA) (Masakazu Aono, Director General, MANA), National Institute for Materials Science (NIMS (Sukekatsu Ushioda, President)) successfully developed gold nanoparticles that have functional surfaces and act on osteogenic differentiation of stem cells.

This research result had been published online version of journal Biomaterials on 6 April 2015 (Jasmine Jia’En Li, Naoki Kawazoe and Guoping Chen, Title: “Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis”, 2015 Jun 6; 54: 226-36, doi:10.1016/j.biomaterials.2015.03.001)

In regenerative medicine, the technology to control stem cell functions such as differentiation and proliferation is indispensable. It has been reported that nanosized gold particles promote the differentiation of human mesenchymal stem cells into osteoblasts.

Also, other studies suggested that various functional groups such as amino, carboxyl and hydroxyl groups promote or inhibit stem cell differentiation. Based on these reports, we assumed that gold nanoparticles with surface modified with functional groups is a promising candidate to control stem cell functions. However, specific effects of such particles on the differentiation of human mesenchymal stem cells was unknown.

We synthesized gold nanoparticles with surface modified with one of the following functional groups: a positively-charged amino group (-NH2), a negatively-charged carboxyl group (-COOH) or a neutral hydroxyl group (-OH), and identified how they affect the osteogenic differentiation of mesenchymal stem cells that were derived from human bone marrow. Among these three types of nanoparticles, those with the carboxyl groups were uptaken by cells and exhibited a strong bone differentiation-inhibitory effect compared to the other types of nanoparticles.

Furthermore, we investigated the effect of gold nanoparticles with carboxyl groups on the gene expression profile of mesenchymal stem cell from human bone marrow. The results indicated that the nanoparticles inhibited several gene expressions related to osteogenic differentiation. Therefore, the influence of the gold nanoparticles on promoting or inhibiting osteogenic differentiation varied depending on the types of functional groups.

In view of regenerative medicine, it is essential to develop technology enabling controlling stem cell functions as well as safe and high-quality stem cells. In the present study, we attempted to control stem cell functions through material manipulation, and our findings will contribute to the creation of novel nanomaterials that facilitate the advancement of stem cell manipulation. We intend to build upon these results in our future endeavors in developing regenerative medicine.

Image: Human mesenchymal stem cells (hMSCs) resulted from the following steps: each type of gold nanoparticles was added to hMSCs, and the treated cells were cultured for 3 weeks. The cells received either alkaline phosphatase (ALP) staining or alizarin red staining (ARS) of calcium phosphate deposits, both of which are osteogenic differentiation indicators.

Control experiments with unmodified gold nanoparticles and untreated hMSCs were also carried out for comparison. In the upper images, ALP positive cells were stained purple while agglomerates of gold nanoparticles were detected as blue dots. In the lower images, spider-web-like red stains represent calcium phosphate deposits while bluish purple dots indicate agglomerates of gold nanoparticles. All scale bars are 500 μm. Image copyright: MANA, NIMS


Associated links
NIMS article

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>