Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015

Surface Modification by Carboxyl Groups Suppressing Osteogenic Differentiation. Nanomaterials Paving the Way for Regenerative Medicine

Tissue Regeneration Materials Unit at MANA, NIMS successfully developed gold nanoparticles that have functional surfaces and act on osteogenic differentiation of stem cells.

Tissue Regeneration Materials Unit (Guoping Chen, Unit Director) at the International Center for Materials Nanoarchitectonics (MANA) (Masakazu Aono, Director General, MANA), National Institute for Materials Science (NIMS (Sukekatsu Ushioda, President)) successfully developed gold nanoparticles that have functional surfaces and act on osteogenic differentiation of stem cells.

This research result had been published online version of journal Biomaterials on 6 April 2015 (Jasmine Jia’En Li, Naoki Kawazoe and Guoping Chen, Title: “Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis”, 2015 Jun 6; 54: 226-36, doi:10.1016/j.biomaterials.2015.03.001)

In regenerative medicine, the technology to control stem cell functions such as differentiation and proliferation is indispensable. It has been reported that nanosized gold particles promote the differentiation of human mesenchymal stem cells into osteoblasts.

Also, other studies suggested that various functional groups such as amino, carboxyl and hydroxyl groups promote or inhibit stem cell differentiation. Based on these reports, we assumed that gold nanoparticles with surface modified with functional groups is a promising candidate to control stem cell functions. However, specific effects of such particles on the differentiation of human mesenchymal stem cells was unknown.

We synthesized gold nanoparticles with surface modified with one of the following functional groups: a positively-charged amino group (-NH2), a negatively-charged carboxyl group (-COOH) or a neutral hydroxyl group (-OH), and identified how they affect the osteogenic differentiation of mesenchymal stem cells that were derived from human bone marrow. Among these three types of nanoparticles, those with the carboxyl groups were uptaken by cells and exhibited a strong bone differentiation-inhibitory effect compared to the other types of nanoparticles.

Furthermore, we investigated the effect of gold nanoparticles with carboxyl groups on the gene expression profile of mesenchymal stem cell from human bone marrow. The results indicated that the nanoparticles inhibited several gene expressions related to osteogenic differentiation. Therefore, the influence of the gold nanoparticles on promoting or inhibiting osteogenic differentiation varied depending on the types of functional groups.

In view of regenerative medicine, it is essential to develop technology enabling controlling stem cell functions as well as safe and high-quality stem cells. In the present study, we attempted to control stem cell functions through material manipulation, and our findings will contribute to the creation of novel nanomaterials that facilitate the advancement of stem cell manipulation. We intend to build upon these results in our future endeavors in developing regenerative medicine.

Image: Human mesenchymal stem cells (hMSCs) resulted from the following steps: each type of gold nanoparticles was added to hMSCs, and the treated cells were cultured for 3 weeks. The cells received either alkaline phosphatase (ALP) staining or alizarin red staining (ARS) of calcium phosphate deposits, both of which are osteogenic differentiation indicators.

Control experiments with unmodified gold nanoparticles and untreated hMSCs were also carried out for comparison. In the upper images, ALP positive cells were stained purple while agglomerates of gold nanoparticles were detected as blue dots. In the lower images, spider-web-like red stains represent calcium phosphate deposits while bluish purple dots indicate agglomerates of gold nanoparticles. All scale bars are 500 μm. Image copyright: MANA, NIMS


Associated links
NIMS article

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>