Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystalline materials enable high-speed electronic function in optical fibers

06.02.2012
Scientists at the University of Southampton, in collaboration with Penn State University have, for the first time, embedded the high level of performance normally associated with chip-based semiconductors into an optical fibre, creating high-speed optoelectronic function.

The potential applications of such optical fibres include improved telecommunications and other hybrid optical/electronic technologies. This transatlantic team will publish its findings in the journal Nature Photonics this month.

The team has taken a novel approach to the problems traditionally associated with embedding this technology. Rather than merge a flat chip with a round optical fibre, they found a way to build a new kind of optical fibre with its own integrated electronic component, thereby bypassing the need to integrate fibre-optics onto a chip. To do this, they used high-pressure chemistry techniques to deposit semiconducting materials layer by layer directly into tiny holes in optical fibres.

Dr Pier Sazio, Senior Research Fellow in the University of Southampton's Optoelectronics Research Centre (ORC), says: "The big breakthrough here is that we don't need the whole chip as part of the finished product. We have managed to build the junction - the active boundary where all the electronic action takes place - right into the fibre. Moreover, while conventional chip fabrication requires multimillion dollar clean room facilities, our process can be performed with simple equipment that costs much less."

John Badding, Professor of Chemistry at Penn State, explains: "The integration of optical fibres and chips is difficult for many reasons. First, fibres are round and cylindrical, while chips are flat, so simply shaping the connection between the two is a challenge. Another challenge is the alignment of pieces that are so small. An optical fibre is 10 times smaller than the width of a human hair. On top of that, there are light-guiding pathways that are built onto chips that are even smaller than the fibres by as much as 100 times, so imagine just trying to line those two devices up. That feat is a big challenge for today's technology."

Dr Anna Peacock, from the ORC who holds a Royal Academy of Engineering Research Fellowship, adds: "The incorporation of optoelectronic device functionality inside the optical fibre geometry is an important technological advance for future communication networks. In this sense, we can start to imagine a scenario where the data signal never has to leave the fibre for faster, cheaper, more efficient systems."

The research also has many potential non-telecommunications applications. It represents a very different approach to fabricating semiconductor junctions that the team is investigating.

ORC Postdoctoral Researcher, Dr Noel Healy concludes: "This demonstration of complex in-fibre optoelectronic engineering is exciting, as it has the potential to be a key enabling technology in the drive for faster, lower cost, and more energy efficient communication networks."

The research was funded by the Engineering and Physical Sciences Research Council of the United Kingdom and the U.S. National Science Foundation.

Glenn Harris | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>