Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cotton is the fabric of your lights...your iPod...your MP3 player...your cell phone

10.03.2010
Consider this T-shirt: It can monitor your heart rate and breathing, analyze your sweat and even cool you off on a hot summer's day. What about a pillow that monitors your brain waves, or a solar-powered dress that can charge your ipod or MP4 player? This is not science fiction – this is cotton in 2010.

Now, the laboratory of Juan Hinestroza, assistant professor of Fiber Science and Apparel Design, has developed cotton threads that can conduct electric current as well as a metal wire can, yet remain light and comfortable enough to give a whole new meaning to multi-use garments.

This technology works so well that simple knots in such specially treated thread can complete a circuit – and solar-powered dress with this technology literally woven into its fabric will be featured at the annual Cornell Design League Fashion Show on Saturday, March 13 at Cornell University's Barton Hall.

Using multidisciplinary nanotechnology developed at Cornell in collaboration with the universities at Bologna and Cagliari, Italy, Hinestroza and his colleagues developed a technique to permanently coat cotton fibers with electrically conductive nanoparticles. "We can definitively have sections of a traditional cotton fabric becoming conductive, hence a great myriad of applications can be achieved," Hinestroza said.

"The technology developed by us and our collaborators allows cotton to remain flexible, light and comfortable while being electronically conductive," Hinestroza said. "Previous technologies have achieved conductivity but the resulting fiber becomes rigid and heavy. Our new techniques make our yarns friendly to further processing such as weaving, sewing and knitting."

This technology is beyond the theory stage. Hinestroza's student, Abbey Liebman, was inspired by the technology enough to design a dress that actually uses flexible solar cells to power small electronics from a USB charger located in the waist. The charger can power a smartphone or an MP3 player.

"Instead of conventional wires, we are using our conductive cotton to transmit the electricity -- so our conductive yarns become part of the dress," Hinestroza said. "Cotton used to be called the 'fabric of our lives' but based on these results, we can now call it 'The fabric of our lights.'"

Joe Schwartz | EurekAlert!
Further information:
http://www.cornell.edu
http://www.rso.cornell.edu/CDesignL/shows.php

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>