Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bobsled runs – fast and yet safe

01.12.2011
They should prove a challenge for the athletes, but not put them in danger: bobsled runs have to be simulated before being built. This simulation is based on the friction levels of the runners on the ice. Now it has become possible to measure these levels accurately. These results will help build the run for the 2014 Olympic Winter Games.

Lightning fast, the sled bolts down the icy run. Will the team make it to the finish faster than their competitors? The tension in the crowd depends partly on the run itself: the faster the sleds can travel on the run, the more thrilling the race. But the track mustn’t be too fast: the crew still needs to be able to reach the bottom safely.


The friction levels of runners can now be measured accurately: top right, the measuring setup with runner and sensor in the ice channel; below right, various types of runner: (left to right) bob, skeleton and luge. © Fraunhofer IWM

So engineers have to calculate and simulate exactly how fast a sled can travel on specific sections of the track. The calculations are based on the friction levels between the runners and the ice. Up to now, the problem has been the difficulty of measuring these levels at such high speeds, and the data collected have been rather far from reality. This meant that the speed of the sleds was often estimated too high or too low, which could lead to accidents.

In future tracks are set to become safer. Researchers at the Fraunhofer Institute for Mechanics of Materials IWM at the Microtribology Center µTC in Pfinztal have now developed a method of measuring the friction levels accurately. In so doing, they are able to provide their colleagues from Gurgel+Partner, consulting engineers responsible for design and construction of the bobsled track for the 2014 Winter Olympics in Sochi, with a solid basis for their calculations. “This measuring device allows us to ascertain the precise level of friction between the sled and the ice at high speeds – from which we can calculate the maximum speed a team can reach,” explains Prof. Dr. Matthias Scherge, business unit manager at the IWM.

Our “bobsled track” is in fact a large drum, similar to that of a washing machine, which is 3.8 meters in diameter and open on one side, situated in a bunker that has been chilled to -4°C. On the inside of the drum is a layer of ice, on which the test runners slide. A hydraulic cylinder presses each runner to the ice, simulating the weight of the sled and the crew. Whenever the drum rotates, the ice moves out from under the runner, slightly displacing both it and the attached friction force sensor. So instead of remaining at the lowest point, the runner is carried along a little by the rotating drum. Just how far depends on the amount of friction between the runner and the ice.

In their experiments with this apparatus and with other test rigs, the researchers take into account numerous factors, such as the nature of the ice itself. Ice at Whistler ski resort in Canada, for example, has different friction qualities than ice in Krasnaya Polyana near Sochi. Atmospheric humidity is significantly higher at Whistler because of its proximity to the Pacific, so ice accumulates faster there. The scientists can adjust the climatic conditions in the lab accordingly. They are also looking into the effect on runners of having a good finish. To what degree does a professional finish affect the speed of a bobsled weighing up to 630 kilograms?

Researchers also recreate the steering movements of the racing vehicle: the runners on the glide body can be set at an angle to simulate cornering. The minimal friction level – which is to say the fastest possible speed the sled can achieve on any particular track under various ice conditions, providing the team does everything right – is taken by Gurgel+Partner engineers as the basis for their calculations. In the meantime, construction is underway in Sochi.

Prof. Dr. Matthias Scherge | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2011/december/bobsled-runs-fast-and-yet-safe.html

More articles from Materials Sciences:

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>