# Forum for Science, Industry and Business

Search our Site:

## Bobsled runs – fast and yet safe

01.12.2011
They should prove a challenge for the athletes, but not put them in danger: bobsled runs have to be simulated before being built. This simulation is based on the friction levels of the runners on the ice. Now it has become possible to measure these levels accurately. These results will help build the run for the 2014 Olympic Winter Games.

Lightning fast, the sled bolts down the icy run. Will the team make it to the finish faster than their competitors? The tension in the crowd depends partly on the run itself: the faster the sleds can travel on the run, the more thrilling the race. But the track mustn’t be too fast: the crew still needs to be able to reach the bottom safely.

The friction levels of runners can now be measured accurately: top right, the measuring setup with runner and sensor in the ice channel; below right, various types of runner: (left to right) bob, skeleton and luge. © Fraunhofer IWM

So engineers have to calculate and simulate exactly how fast a sled can travel on specific sections of the track. The calculations are based on the friction levels between the runners and the ice. Up to now, the problem has been the difficulty of measuring these levels at such high speeds, and the data collected have been rather far from reality. This meant that the speed of the sleds was often estimated too high or too low, which could lead to accidents.

In future tracks are set to become safer. Researchers at the Fraunhofer Institute for Mechanics of Materials IWM at the Microtribology Center µTC in Pfinztal have now developed a method of measuring the friction levels accurately. In so doing, they are able to provide their colleagues from Gurgel+Partner, consulting engineers responsible for design and construction of the bobsled track for the 2014 Winter Olympics in Sochi, with a solid basis for their calculations. “This measuring device allows us to ascertain the precise level of friction between the sled and the ice at high speeds – from which we can calculate the maximum speed a team can reach,” explains Prof. Dr. Matthias Scherge, business unit manager at the IWM.

Our “bobsled track” is in fact a large drum, similar to that of a washing machine, which is 3.8 meters in diameter and open on one side, situated in a bunker that has been chilled to -4°C. On the inside of the drum is a layer of ice, on which the test runners slide. A hydraulic cylinder presses each runner to the ice, simulating the weight of the sled and the crew. Whenever the drum rotates, the ice moves out from under the runner, slightly displacing both it and the attached friction force sensor. So instead of remaining at the lowest point, the runner is carried along a little by the rotating drum. Just how far depends on the amount of friction between the runner and the ice.

In their experiments with this apparatus and with other test rigs, the researchers take into account numerous factors, such as the nature of the ice itself. Ice at Whistler ski resort in Canada, for example, has different friction qualities than ice in Krasnaya Polyana near Sochi. Atmospheric humidity is significantly higher at Whistler because of its proximity to the Pacific, so ice accumulates faster there. The scientists can adjust the climatic conditions in the lab accordingly. They are also looking into the effect on runners of having a good finish. To what degree does a professional finish affect the speed of a bobsled weighing up to 630 kilograms?

Researchers also recreate the steering movements of the racing vehicle: the runners on the glide body can be set at an angle to simulate cornering. The minimal friction level – which is to say the fastest possible speed the sled can achieve on any particular track under various ice conditions, providing the team does everything right – is taken by Gurgel+Partner engineers as the basis for their calculations. In the meantime, construction is underway in Sochi.

Prof. Dr. Matthias Scherge | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2011/december/bobsled-runs-fast-and-yet-safe.html

### More articles from Materials Sciences:

New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

### Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

### Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

### Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

### Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

### Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige