Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ames Laboratory scientist using low-gravity space station lab to study crystal growth

23.09.2009
Real time space experiments controlled by Earth-bound researcher

A research project 10 years in the making is now orbiting the Earth, much to the delight of its creator Rohit Trivedi, a senior metallurgist at the U.S. Department of Energy’s Ames Laboratory. Equipment recently delivered to the International Space Station by the Space Shuttle Discovery will allow the Earth-bound Trivedi to conduct crystal growth experiments he first conceived more than a decade ago.

The equipment is actually a mini laboratory, known as DECLIC – DEvice for the study of Critical LIquids and Crystallization – will allow Trivedi to study and even control crystal growth pattern experiments, in real time, from his laboratory in Wilhelm Hall on the Iowa State University campus in Ames. The goal is to use the microgravity environment on board the Space Station to determine how materials form crystals as they move from liquid to solid and what effect variations in growth conditions have on crystallization patterns.

“When materials ‘freeze’ there are specific crystalline growth patterns that appear,” Trivedi said, “and there are fundamental physics that govern these patterns. However, small effects can have significant influence on the patterns that form. Snow flakes, for example, form the same basic six-sided pattern, but because of minute variations, no two are exactly alike. These crystallization patterns play a critical role in governing the properties of a solidified material”

Trivedi hopes the experiments will help explain how certain materials, under certain conditions produce particular crystal growth patterns, such as these nickel-based superconductors.

The equipment is actually a mini laboratory, known as DECLIC – DEvice for the study of Critical LIquids and Crystallization – will allow Trivedi to study and even control crystal growth pattern experiments, in real time, from his laboratory in Wilhelm Hall on the Iowa State University campus in Ames. The goal is to use the microgravity environment on board the Space Station to determine how materials form crystals as they move from liquid to solid and what effect variations in growth conditions have on crystallization patterns.

“When materials ‘freeze’ there are specific crystalline growth patterns that appear,” Trivedi said, “and there are fundamental physics that govern these patterns. However, small effects can have significant influence on the patterns that form. Snow flakes, for example, form the same basic six-sided pattern, but because of minute variations, no two are exactly alike. These crystallization patterns play a critical role in governing the properties of a solidified material”

While Trivedi, who is also an ISU distinguished professor of materials science and engineering, studies primarily metals, the material to be used in the DECLIC experiments is a transparent, wax-like substance called succinonitrile. With a relatively low melting point, 57 degrees Celsius, the material lends itself to study in the controlled confines of the Space Station, and its transparency will make it possible for researchers to view the crystal growth process as the material solidifies. However, the basic principles governing crystal growth will be the same.

So why conduct the experiment in low gravity? Trivedi hopes that the low gravity will “erase” the effects of convection, the natural circulation of fluid.

“On Earth, the small effects are masked by convection,” he said. “We hope that in a low-gravity environment, convection will be minimized so that we can more clearly see the importance of the small effects and see how the experimental data match our theoretical modeling.”

Much of that modeling has been done by collaboration with Trivedi’s colleague, Alain Karma, a theoretical physicist at Northeastern University in Boston. The pair has also collaborated closely with the Centre National d'Etudes Spatiales (CNES), the French government space agency that along with NASA, helped fund the work.

After preliminary testing in September, DECLIC is scheduled to be online in October and the first set of experiments will run through February 2010 according to Trivedi. Through a connection with the computation center in Toulouse, France, Trivedi’s research group will be able to view video of the material as it solidifies. To pick up the necessary detail, Trivedi’s lab is outfitted with a big-screen, high definition monitor. But they won’t be just passive spectators.

“If we see something unusual, we can repeat the experiment, all in real time,” Trivedi said. “Likewise, if we don’t see much happening, we can alter the conditions and move on.”

All the video from the DECLIC experiments will be captured and stored for future reference by CNES in Toulouse, France. Trivedi’s research proposal was originally selected by NASA for funding back in 1998, receiving approximately $2 million in total through ISU’s Institute for Physical Research and Technology, and was later selected as one of only six projects in materials science selected for actual flight. To now be this close to seeing the project in operation is exciting for Trivedi.

“It’s been a long time since we started,” Trivedi said, “but it’s also given us time to finalize the experiments and work on the theoretical side. Now we’re just anxious to get experimental results to see if things behave as we expect.”

Trivedi’s research isn’t the only Ames Laboratory science in outer space. Materials developed at the Lab’s Materials Preparation Center are on board the Planck satellite as part of the instrument cooling system.

Ames Laboratory is a U.S. Department of Energy Office of Science laboratory operated for the DOE by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global challenges.

Kerry Gibson | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht Siberian scientists suggested a new method for synthesizing a promising magnetic material
23.01.2018 | Siberian Federal University

nachricht Complex tessellations, extraordinary materials
23.01.2018 | Technische Universität München

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>