Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ames Laboratory scientist using low-gravity space station lab to study crystal growth

23.09.2009
Real time space experiments controlled by Earth-bound researcher

A research project 10 years in the making is now orbiting the Earth, much to the delight of its creator Rohit Trivedi, a senior metallurgist at the U.S. Department of Energy’s Ames Laboratory. Equipment recently delivered to the International Space Station by the Space Shuttle Discovery will allow the Earth-bound Trivedi to conduct crystal growth experiments he first conceived more than a decade ago.

The equipment is actually a mini laboratory, known as DECLIC – DEvice for the study of Critical LIquids and Crystallization – will allow Trivedi to study and even control crystal growth pattern experiments, in real time, from his laboratory in Wilhelm Hall on the Iowa State University campus in Ames. The goal is to use the microgravity environment on board the Space Station to determine how materials form crystals as they move from liquid to solid and what effect variations in growth conditions have on crystallization patterns.

“When materials ‘freeze’ there are specific crystalline growth patterns that appear,” Trivedi said, “and there are fundamental physics that govern these patterns. However, small effects can have significant influence on the patterns that form. Snow flakes, for example, form the same basic six-sided pattern, but because of minute variations, no two are exactly alike. These crystallization patterns play a critical role in governing the properties of a solidified material”

Trivedi hopes the experiments will help explain how certain materials, under certain conditions produce particular crystal growth patterns, such as these nickel-based superconductors.

The equipment is actually a mini laboratory, known as DECLIC – DEvice for the study of Critical LIquids and Crystallization – will allow Trivedi to study and even control crystal growth pattern experiments, in real time, from his laboratory in Wilhelm Hall on the Iowa State University campus in Ames. The goal is to use the microgravity environment on board the Space Station to determine how materials form crystals as they move from liquid to solid and what effect variations in growth conditions have on crystallization patterns.

“When materials ‘freeze’ there are specific crystalline growth patterns that appear,” Trivedi said, “and there are fundamental physics that govern these patterns. However, small effects can have significant influence on the patterns that form. Snow flakes, for example, form the same basic six-sided pattern, but because of minute variations, no two are exactly alike. These crystallization patterns play a critical role in governing the properties of a solidified material”

While Trivedi, who is also an ISU distinguished professor of materials science and engineering, studies primarily metals, the material to be used in the DECLIC experiments is a transparent, wax-like substance called succinonitrile. With a relatively low melting point, 57 degrees Celsius, the material lends itself to study in the controlled confines of the Space Station, and its transparency will make it possible for researchers to view the crystal growth process as the material solidifies. However, the basic principles governing crystal growth will be the same.

So why conduct the experiment in low gravity? Trivedi hopes that the low gravity will “erase” the effects of convection, the natural circulation of fluid.

“On Earth, the small effects are masked by convection,” he said. “We hope that in a low-gravity environment, convection will be minimized so that we can more clearly see the importance of the small effects and see how the experimental data match our theoretical modeling.”

Much of that modeling has been done by collaboration with Trivedi’s colleague, Alain Karma, a theoretical physicist at Northeastern University in Boston. The pair has also collaborated closely with the Centre National d'Etudes Spatiales (CNES), the French government space agency that along with NASA, helped fund the work.

After preliminary testing in September, DECLIC is scheduled to be online in October and the first set of experiments will run through February 2010 according to Trivedi. Through a connection with the computation center in Toulouse, France, Trivedi’s research group will be able to view video of the material as it solidifies. To pick up the necessary detail, Trivedi’s lab is outfitted with a big-screen, high definition monitor. But they won’t be just passive spectators.

“If we see something unusual, we can repeat the experiment, all in real time,” Trivedi said. “Likewise, if we don’t see much happening, we can alter the conditions and move on.”

All the video from the DECLIC experiments will be captured and stored for future reference by CNES in Toulouse, France. Trivedi’s research proposal was originally selected by NASA for funding back in 1998, receiving approximately $2 million in total through ISU’s Institute for Physical Research and Technology, and was later selected as one of only six projects in materials science selected for actual flight. To now be this close to seeing the project in operation is exciting for Trivedi.

“It’s been a long time since we started,” Trivedi said, “but it’s also given us time to finalize the experiments and work on the theoretical side. Now we’re just anxious to get experimental results to see if things behave as we expect.”

Trivedi’s research isn’t the only Ames Laboratory science in outer space. Materials developed at the Lab’s Materials Preparation Center are on board the Planck satellite as part of the instrument cooling system.

Ames Laboratory is a U.S. Department of Energy Office of Science laboratory operated for the DOE by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global challenges.

Kerry Gibson | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>