Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new spin on antifreeze

12.06.2012
Researchers create ultra slippery anti-ice and anti-frost surfaces
A team of researchers from Harvard University have invented a way to keep any metal surface free of ice and frost. The treated surfaces quickly shed even tiny, incipient condensation droplets or frost simply through gravity. The technology prevents ice sheets from developing on surfaces—and any ice that does form, slides off effortlessly.

The discovery, published online as a just-accepted-manuscript in ACS Nano on June 10, has direct implications for a wide variety of metal surfaces such as those used in refrigeration systems, wind turbines, aircraft, marine vessels, and the construction industry.

The group, led by Joanna Aizenberg, Amy Smith Berylson Professor of Materials Science at the Harvard School of Engineering and Applied Sciences (SEAS) and a Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering at Harvard, previously introduced the idea that it was possible to create a surface that completely prevented ice with ice-repellent coatings, inspired by the water repellent lotus leaf. Yet this technique can fail under high humidity as the surface textures become coated with condensation and frost.

“The lack of any practical way to eliminate the intrinsic defects and inhomogeneities that contribute to liquid condensation, pinning, freezing, and strong adhesion, have raised the question of whether any solid surface (irrespective of its topography or treatment) can ever be truly ice-preventive, especially at high-humidity, frost-forming conditions,” Aizenberg said.

To combat this problem, the researchers recently invented a radically different technology that is suited for both high humidity and extreme pressure, called SLIPS (Slippery Liquid Infused Porous Surfaces). SLIPS are designed to expose a defect-free, molecularly flat liquid interface, immobilized by a hidden nanostructured solid. On these ultra smooth slippery surfaces fluids and solids alike—including water drops, condensation, frost, and even solid ice—can slide off easily.

The challenge was to apply this technology to metal surfaces, especially as these materials are ubiquitous in our modern world, from airplane wings to railings. Aizenberg and her team developed a way to coat the metal with a rough material that the lubricant can adhere to. The coating can be finely sculpted to lock in the lubricant and can be applied over a large scale, on arbitrarily shaped metal surfaces. In addition, the coating is non-toxic and anti-corrosive.

To demonstrate the robustness of the technology, the researchers successfully applied it to refrigerator cooling fins and tested it under a prolonged, deep freeze condition. Compared to existing “frost-free” cooling systems, their innovation completely prevented frost far more efficiently and for a longer time.

“Unlike lotus leaf-inspired icephobic surfaces, which fail under high humidity conditions, SLIPS-based icephobic materials, as our results suggest, can completely prevent ice formation at temperatures slightly below 0°C while dramatically reducing ice accumulation and adhesion under deep freezing, frost-forming conditions,” said Aizenberg.

In addition to allowing for the efficient removal of ice, the technology lowers the energy costs associated by several orders of magnitude. Thus, the readily scalable approach to slippery metallic surfaces holds great promise for broad application in the refrigeration and aviation industry and in other high-humidity environments where an icephobic surface is desirable.

For example, once their technology is applied to a surface, ice on roofs, wires, outdoor signs, and wind turbines could be easily removed merely by tilting, slight agitation, or even wind and vibrations.

"This new approach to icephobic materials is a truly disruptive idea that offers a way to make a transformative impact on energy and safety costs associated with ice, and we are actively working with the refrigeration and aviation industries to bring it to market," said Aizenberg.

Aizenberg is also Professor of Chemistry and Chemical Biology in the Department of Chemistry and Chemical Biology, and Susan S. and Kenneth L. Wallach Professor at the Radcliffe Institute for Advanced Study, and Director of the Kavli Institute for Bionano Science and Technology at Harvard. Her co-authors included Philseok Kim, a Technology Development Fellow at the Wyss Institute and SEAS; Tak-Sing Wong of the Wyss Institute and SEAS; Jack Alvarenga of the Wyss Institute; Michael J. Kreder of the Wyss Institute; and Wilmer E. Adorno-Martinez of University of Puerto Rico.

The authors received support from the Materials Research Science and Engineering Center (MRSEC) at Harvard under NSF award #DMR-1005022. Part of this work was performed at the Center for Nanoscale Systems (CNS) at Harvard supported under NSF award #ECS-0335765. In addition, the team acknowledges the Croucher Foundation Postdoctoral Fellowship; the REU BRIDGE, co-funded by the ASSURE program of the DoD in partnership with the NSF REU Site program under NSF Grant #DMR-1005022.

Michael Patrick Rutter | EurekAlert!
Further information:
http://www.seas.harvard.edu
http://www.seas.harvard.edu/news-events/press-releases/a-new-spin-on-antifreeze

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>