Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new kind of micro-mobility

15.12.2009
Method of moving tiny particles using magnetic fields could find uses in microchips and in medicine

A new microscopic system devised by researchers in MIT's department of materials science and engineering could provide a novel method for moving tiny objects inside a microchip, and could also provide new insights into how cells and other objects are propelled around within the body.

Inside organs such as the trachea and the intestines, tiny hair-like filaments called cilia are constantly in motion, beating in unison to create currents that sweep along cells, nutrients, or other tiny particles. The new research uses a self-assembling system to mimic that kind of motion, providing a simple way to move particles around in a precisely controlled way.

Alfredo Alexander-Katz, the Toyota Career Development Assistant Professor of Materials Science and Engineering, and his doctoral student Charles Sing and other researchers, devised a system that uses tiny beads made of polymers with specks of magnetic material in them. With these beads suspended in a liquid, they applied a rotating magnetic field, which caused the beads to spontaneously form short chains which began spinning, creating currents that could then carry along surrounding particles — even particles as much as 100 times larger than the beads themselves.

Alexander-Katz refers to the microscopic beads — each just one micron (a millionth of a meter) in diameter — as "micro-ants," because of their ability to move along while "carrying" objects so much larger than themselves. A paper describing the research will appear the week of Dec. 14 in the Proceedings of the National Academy of Sciences.

The new method could provide a simpler, less-expensive alternative to present microfluidic devices, a field that is still in its early stages of development. Now, such devices require precisely made channels, valves and pumps created using microchip manufacturing methods, in order to control the movement of fluids through them. But the new system could offer such precise control over the movement of liquids and the particles suspended in them that it may be possible to dispense with the channels and other plumbing altogether, controlling the movements entirely through variations in the applied magnetic field.

In short, software rather than hardware could control the chip's properties, allowing it to be instantly reconfigured through changes in the controlling software — and approach Alexander-Katz refers to as "virtual microfluidics." This could reduce the cost and increase the flexibility of the devices, which might be used for such things as biomedical screening or the detection of trace elements for pollution monitoring or security screening. It might also provide even finer spatial control than can presently be achieved using conventional channels on chips.

Alexander-Katz says the work might also help biologists better understand the way cilia work, by providing a way to mimic their activity in the lab. "People are still trying to understand how you get synchronization in the system" of cilia in organisms. "This might be a way to test many of the theories."

He says the way the chains of beads moved is a bit like a person trying to do cartwheels while standing on an icy surface. "As they rotate, they slip a bit," he says, "but overall, they keep moving," and this imparts a directional flow to the surrounding fluid.

Ultimately, such a system might someday even be developed to use in medical diagnostics, by allowing controlled delivery of particles inside the body to specifically targeted locations, for example while the patient is in a nuclear magnetic resonance (NMR) imaging system.

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>