Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new kind of micro-mobility

15.12.2009
Method of moving tiny particles using magnetic fields could find uses in microchips and in medicine

A new microscopic system devised by researchers in MIT's department of materials science and engineering could provide a novel method for moving tiny objects inside a microchip, and could also provide new insights into how cells and other objects are propelled around within the body.

Inside organs such as the trachea and the intestines, tiny hair-like filaments called cilia are constantly in motion, beating in unison to create currents that sweep along cells, nutrients, or other tiny particles. The new research uses a self-assembling system to mimic that kind of motion, providing a simple way to move particles around in a precisely controlled way.

Alfredo Alexander-Katz, the Toyota Career Development Assistant Professor of Materials Science and Engineering, and his doctoral student Charles Sing and other researchers, devised a system that uses tiny beads made of polymers with specks of magnetic material in them. With these beads suspended in a liquid, they applied a rotating magnetic field, which caused the beads to spontaneously form short chains which began spinning, creating currents that could then carry along surrounding particles — even particles as much as 100 times larger than the beads themselves.

Alexander-Katz refers to the microscopic beads — each just one micron (a millionth of a meter) in diameter — as "micro-ants," because of their ability to move along while "carrying" objects so much larger than themselves. A paper describing the research will appear the week of Dec. 14 in the Proceedings of the National Academy of Sciences.

The new method could provide a simpler, less-expensive alternative to present microfluidic devices, a field that is still in its early stages of development. Now, such devices require precisely made channels, valves and pumps created using microchip manufacturing methods, in order to control the movement of fluids through them. But the new system could offer such precise control over the movement of liquids and the particles suspended in them that it may be possible to dispense with the channels and other plumbing altogether, controlling the movements entirely through variations in the applied magnetic field.

In short, software rather than hardware could control the chip's properties, allowing it to be instantly reconfigured through changes in the controlling software — and approach Alexander-Katz refers to as "virtual microfluidics." This could reduce the cost and increase the flexibility of the devices, which might be used for such things as biomedical screening or the detection of trace elements for pollution monitoring or security screening. It might also provide even finer spatial control than can presently be achieved using conventional channels on chips.

Alexander-Katz says the work might also help biologists better understand the way cilia work, by providing a way to mimic their activity in the lab. "People are still trying to understand how you get synchronization in the system" of cilia in organisms. "This might be a way to test many of the theories."

He says the way the chains of beads moved is a bit like a person trying to do cartwheels while standing on an icy surface. "As they rotate, they slip a bit," he says, "but overall, they keep moving," and this imparts a directional flow to the surrounding fluid.

Ultimately, such a system might someday even be developed to use in medical diagnostics, by allowing controlled delivery of particles inside the body to specifically targeted locations, for example while the patient is in a nuclear magnetic resonance (NMR) imaging system.

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>