Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new kind of micro-mobility

15.12.2009
Method of moving tiny particles using magnetic fields could find uses in microchips and in medicine

A new microscopic system devised by researchers in MIT's department of materials science and engineering could provide a novel method for moving tiny objects inside a microchip, and could also provide new insights into how cells and other objects are propelled around within the body.

Inside organs such as the trachea and the intestines, tiny hair-like filaments called cilia are constantly in motion, beating in unison to create currents that sweep along cells, nutrients, or other tiny particles. The new research uses a self-assembling system to mimic that kind of motion, providing a simple way to move particles around in a precisely controlled way.

Alfredo Alexander-Katz, the Toyota Career Development Assistant Professor of Materials Science and Engineering, and his doctoral student Charles Sing and other researchers, devised a system that uses tiny beads made of polymers with specks of magnetic material in them. With these beads suspended in a liquid, they applied a rotating magnetic field, which caused the beads to spontaneously form short chains which began spinning, creating currents that could then carry along surrounding particles — even particles as much as 100 times larger than the beads themselves.

Alexander-Katz refers to the microscopic beads — each just one micron (a millionth of a meter) in diameter — as "micro-ants," because of their ability to move along while "carrying" objects so much larger than themselves. A paper describing the research will appear the week of Dec. 14 in the Proceedings of the National Academy of Sciences.

The new method could provide a simpler, less-expensive alternative to present microfluidic devices, a field that is still in its early stages of development. Now, such devices require precisely made channels, valves and pumps created using microchip manufacturing methods, in order to control the movement of fluids through them. But the new system could offer such precise control over the movement of liquids and the particles suspended in them that it may be possible to dispense with the channels and other plumbing altogether, controlling the movements entirely through variations in the applied magnetic field.

In short, software rather than hardware could control the chip's properties, allowing it to be instantly reconfigured through changes in the controlling software — and approach Alexander-Katz refers to as "virtual microfluidics." This could reduce the cost and increase the flexibility of the devices, which might be used for such things as biomedical screening or the detection of trace elements for pollution monitoring or security screening. It might also provide even finer spatial control than can presently be achieved using conventional channels on chips.

Alexander-Katz says the work might also help biologists better understand the way cilia work, by providing a way to mimic their activity in the lab. "People are still trying to understand how you get synchronization in the system" of cilia in organisms. "This might be a way to test many of the theories."

He says the way the chains of beads moved is a bit like a person trying to do cartwheels while standing on an icy surface. "As they rotate, they slip a bit," he says, "but overall, they keep moving," and this imparts a directional flow to the surrounding fluid.

Ultimately, such a system might someday even be developed to use in medical diagnostics, by allowing controlled delivery of particles inside the body to specifically targeted locations, for example while the patient is in a nuclear magnetic resonance (NMR) imaging system.

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>