Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Novel Energy-Band Model for Semiconducting Spintronics Material Gallium Manganese Arsenide

The Fermi level position and band structure of gallium manganese arsenide has been determined for the first time, shedding light on the precise mechanism behind ferromagnetism in the material.

The University of Tokyo announced on February 7, 2011 that Professor M. Tanaka and his colleagues have succeeded in determining the Fermi level position and band structure in semiconducting spintronics material gallium manganese arsenide (GaMnAs) by a unique method combining a precise etching technique and resonant tunneling spectroscopy. Details were presented in Nature Physics*.

A ferromagnetic semiconductor is a basic material for spintronics which utilizes "electron spin" to realize new functional devices. Although GaMnAs is such a typical ferromagnetic material, its band structure has been controversial. Prevalent model assumes a valence band merged with an impurity band due to Mn atoms, with the Fermi level located inside the band and holes contribute to electrical conduction. However, optical study has shown that the Fermi level is located outside of valence band.

In this work, layers of 100nm thick beryllium-doped gallium arsenide (GaAs), 5nm thick aluminium arsenide tunnel barrier and GaMnAs were grown successively on a (001) GaAs substrate. The GaMnAs layer is etched to various thickness of 4.6-22nm to make quantum wells of different thickness between the surface and the tunnel barrier. Resonant tunneling spectroscopy, applied to a variety of surface GaMnAs layers, can elucidate the valence-band (VB) picture of GaMnAs. The VB structure of GaAs is almost perfectly maintained and does not merge with the impurity band for any of the GaMnAs samples, with manganese concentrations ranging from 6 to 15%. Furthermore, the exchange splitting of the VB is found to be very small (only several milli-eV), even in GaMnAs with a high Curie temperature (154K).

Researchers suggest that their findings shed light on the precise mechanism behind ferromagnetism in GaMnAs; a subject that has been debated for more than a decade.

Journal information

*Shinobu Ohya, Kenta Takata & Masaaki Tanaka, "Nearly non-magnetic valence band of the ferromagnetic semiconductor GaMnAs", Nature Physics (2011) DOI: doi:10.1038/nphys1905 Published online 06 February 2011.

Mikiko Tanifuji | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>