Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Novel Energy-Band Model for Semiconducting Spintronics Material Gallium Manganese Arsenide

29.03.2011
The Fermi level position and band structure of gallium manganese arsenide has been determined for the first time, shedding light on the precise mechanism behind ferromagnetism in the material.

The University of Tokyo announced on February 7, 2011 that Professor M. Tanaka and his colleagues have succeeded in determining the Fermi level position and band structure in semiconducting spintronics material gallium manganese arsenide (GaMnAs) by a unique method combining a precise etching technique and resonant tunneling spectroscopy. Details were presented in Nature Physics*.

A ferromagnetic semiconductor is a basic material for spintronics which utilizes "electron spin" to realize new functional devices. Although GaMnAs is such a typical ferromagnetic material, its band structure has been controversial. Prevalent model assumes a valence band merged with an impurity band due to Mn atoms, with the Fermi level located inside the band and holes contribute to electrical conduction. However, optical study has shown that the Fermi level is located outside of valence band.

In this work, layers of 100nm thick beryllium-doped gallium arsenide (GaAs), 5nm thick aluminium arsenide tunnel barrier and GaMnAs were grown successively on a (001) GaAs substrate. The GaMnAs layer is etched to various thickness of 4.6-22nm to make quantum wells of different thickness between the surface and the tunnel barrier. Resonant tunneling spectroscopy, applied to a variety of surface GaMnAs layers, can elucidate the valence-band (VB) picture of GaMnAs. The VB structure of GaAs is almost perfectly maintained and does not merge with the impurity band for any of the GaMnAs samples, with manganese concentrations ranging from 6 to 15%. Furthermore, the exchange splitting of the VB is found to be very small (only several milli-eV), even in GaMnAs with a high Curie temperature (154K).

Researchers suggest that their findings shed light on the precise mechanism behind ferromagnetism in GaMnAs; a subject that has been debated for more than a decade.

Journal information

*Shinobu Ohya, Kenta Takata & Masaaki Tanaka, "Nearly non-magnetic valence band of the ferromagnetic semiconductor GaMnAs", Nature Physics (2011) DOI: doi:10.1038/nphys1905 Published online 06 February 2011.

Mikiko Tanifuji | Research asia research news
Further information:
http://nanonet.nims.go.jp/english/modules/news/article.php?a_id=742
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>