Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Novel Energy-Band Model for Semiconducting Spintronics Material Gallium Manganese Arsenide

29.03.2011
The Fermi level position and band structure of gallium manganese arsenide has been determined for the first time, shedding light on the precise mechanism behind ferromagnetism in the material.

The University of Tokyo announced on February 7, 2011 that Professor M. Tanaka and his colleagues have succeeded in determining the Fermi level position and band structure in semiconducting spintronics material gallium manganese arsenide (GaMnAs) by a unique method combining a precise etching technique and resonant tunneling spectroscopy. Details were presented in Nature Physics*.

A ferromagnetic semiconductor is a basic material for spintronics which utilizes "electron spin" to realize new functional devices. Although GaMnAs is such a typical ferromagnetic material, its band structure has been controversial. Prevalent model assumes a valence band merged with an impurity band due to Mn atoms, with the Fermi level located inside the band and holes contribute to electrical conduction. However, optical study has shown that the Fermi level is located outside of valence band.

In this work, layers of 100nm thick beryllium-doped gallium arsenide (GaAs), 5nm thick aluminium arsenide tunnel barrier and GaMnAs were grown successively on a (001) GaAs substrate. The GaMnAs layer is etched to various thickness of 4.6-22nm to make quantum wells of different thickness between the surface and the tunnel barrier. Resonant tunneling spectroscopy, applied to a variety of surface GaMnAs layers, can elucidate the valence-band (VB) picture of GaMnAs. The VB structure of GaAs is almost perfectly maintained and does not merge with the impurity band for any of the GaMnAs samples, with manganese concentrations ranging from 6 to 15%. Furthermore, the exchange splitting of the VB is found to be very small (only several milli-eV), even in GaMnAs with a high Curie temperature (154K).

Researchers suggest that their findings shed light on the precise mechanism behind ferromagnetism in GaMnAs; a subject that has been debated for more than a decade.

Journal information

*Shinobu Ohya, Kenta Takata & Masaaki Tanaka, "Nearly non-magnetic valence band of the ferromagnetic semiconductor GaMnAs", Nature Physics (2011) DOI: doi:10.1038/nphys1905 Published online 06 February 2011.

Mikiko Tanifuji | Research asia research news
Further information:
http://nanonet.nims.go.jp/english/modules/news/article.php?a_id=742
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>