Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Breath Reveals a Hidden Image in Anti-Counterfeit Drug Labels

06.08.2014

An outline of Marilyn Monroe's iconic face appeared on the clear, plastic film when a researcher fogs it with her breath.

Terry Shyu, a doctoral student in chemical engineering at the University of Michigan, was demonstrating a new high-tech label for fighting drug counterfeiting. While the researchers don't envision movie stars on medicine bottles, but they used Monroe’s image to prove their concept.

Counterfeit drugs, which at best contain wrong doses and at worst are toxic, are thought to kill more than 700,000 people per year. While less than 1 percent of the U.S. pharmaceuticals market is believed to be counterfeit, it is a huge problem in the developing world where as much as a third of the available medicine is fake.

To fight back against these and other forms of counterfeiting, researchers at U-M and in South Korea have developed a way to make labels that change when you breathe on them, revealing a hidden image.

"One challenge in fighting counterfeiting is the need to stay ahead of the counterfeiters," said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Chemical Engineering who led the Michigan effort.

The method requires access to sophisticated equipment that can create very tiny features, roughly 500 times smaller than the width of a human hair. But once the template is made, labels can be printed in large rolls at a cost of roughly one dollar per square inch. That's cheap enough for companies to use in protecting the reputation of their products—and potentially the safety of their consumers.

"We use a molding process," Shyu said, noting that this inexpensive manufacturing technique is also used to make plastic cups.

The labels work because an array of tiny pillars on the top of a surface effectively hides images written on the material beneath. Shyu compares the texture of the pillars to a submicroscopic toothbrush. The hidden images appear when the pillars trap moisture.

"You can verify that you have the real product with just a breath of air," Kotov said.

The simple phenomenon could make it easy for buyers to avoid being fooled by fake packaging.

Previously, it was impossible to make nanopillars through cheap molding processes because the pillars were made from materials that preferred adhering to the mold rather than whatever surface they were supposed to cover. To overcome this challenge, the team developed a special blend of polyurethane and an adhesive.

The liquid polymer filled the mold, but as it cured, the material shrunk slightly. This allowed the pillars to release easily. They are also strong enough to withstand rubbing, ensuring that the label would survive some wear, such as would occur during shipping. The usual material for making nanopillars is too brittle to survive handling well.

The team demonstrated the nanopillars could stick to plastics, fabric, paper and metal, and they anticipate that the arrays will also transfer easily to glass and leather.

Following seed funding from the National Science Foundation's Innovation Corps program and DARPA's Small Business Technology Transfer program, the university is pursuing patent protection for the intellectual property and is seeking commercialization partners to help bring the technology to market.

This work is reported in Advanced Materials in a paper titled, "Shear-Resistant Scalable Nanopillar Arrays with LBL-Patterned Overt and Covert Images."

It was funded by the Defense Advanced Research Projects Agency; the National Science Foundation; the Korea Ministry of Science, Information and Communications Technology and Future Planning; the Ministry of Knowledge Economy; and the Korea Evaluation Institute of Industry Technology.

Nicole Casal Moore | newswise
Further information:
http://www.umich.edu

Further reports about: Advanced Materials Drug Technology materials nanopillars pharmaceuticals pillars special tiny

More articles from Materials Sciences:

nachricht Graphene is strong, but is it tough?
05.02.2016 | DOE/Lawrence Berkeley National Laboratory

nachricht New Type of Nanowires, Built with Natural Gas Heating
05.02.2016 | Ulsan National Institute of Science and Technology (UNIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>