Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Breath Reveals a Hidden Image in Anti-Counterfeit Drug Labels

06.08.2014

An outline of Marilyn Monroe's iconic face appeared on the clear, plastic film when a researcher fogs it with her breath.

Terry Shyu, a doctoral student in chemical engineering at the University of Michigan, was demonstrating a new high-tech label for fighting drug counterfeiting. While the researchers don't envision movie stars on medicine bottles, but they used Monroe’s image to prove their concept.

Counterfeit drugs, which at best contain wrong doses and at worst are toxic, are thought to kill more than 700,000 people per year. While less than 1 percent of the U.S. pharmaceuticals market is believed to be counterfeit, it is a huge problem in the developing world where as much as a third of the available medicine is fake.

To fight back against these and other forms of counterfeiting, researchers at U-M and in South Korea have developed a way to make labels that change when you breathe on them, revealing a hidden image.

"One challenge in fighting counterfeiting is the need to stay ahead of the counterfeiters," said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Chemical Engineering who led the Michigan effort.

The method requires access to sophisticated equipment that can create very tiny features, roughly 500 times smaller than the width of a human hair. But once the template is made, labels can be printed in large rolls at a cost of roughly one dollar per square inch. That's cheap enough for companies to use in protecting the reputation of their products—and potentially the safety of their consumers.

"We use a molding process," Shyu said, noting that this inexpensive manufacturing technique is also used to make plastic cups.

The labels work because an array of tiny pillars on the top of a surface effectively hides images written on the material beneath. Shyu compares the texture of the pillars to a submicroscopic toothbrush. The hidden images appear when the pillars trap moisture.

"You can verify that you have the real product with just a breath of air," Kotov said.

The simple phenomenon could make it easy for buyers to avoid being fooled by fake packaging.

Previously, it was impossible to make nanopillars through cheap molding processes because the pillars were made from materials that preferred adhering to the mold rather than whatever surface they were supposed to cover. To overcome this challenge, the team developed a special blend of polyurethane and an adhesive.

The liquid polymer filled the mold, but as it cured, the material shrunk slightly. This allowed the pillars to release easily. They are also strong enough to withstand rubbing, ensuring that the label would survive some wear, such as would occur during shipping. The usual material for making nanopillars is too brittle to survive handling well.

The team demonstrated the nanopillars could stick to plastics, fabric, paper and metal, and they anticipate that the arrays will also transfer easily to glass and leather.

Following seed funding from the National Science Foundation's Innovation Corps program and DARPA's Small Business Technology Transfer program, the university is pursuing patent protection for the intellectual property and is seeking commercialization partners to help bring the technology to market.

This work is reported in Advanced Materials in a paper titled, "Shear-Resistant Scalable Nanopillar Arrays with LBL-Patterned Overt and Covert Images."

It was funded by the Defense Advanced Research Projects Agency; the National Science Foundation; the Korea Ministry of Science, Information and Communications Technology and Future Planning; the Ministry of Knowledge Economy; and the Korea Evaluation Institute of Industry Technology.

Nicole Casal Moore | newswise
Further information:
http://www.umich.edu

Further reports about: Advanced Materials Drug Technology materials nanopillars pharmaceuticals pillars special tiny

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>