Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Breath Reveals a Hidden Image in Anti-Counterfeit Drug Labels

06.08.2014

An outline of Marilyn Monroe's iconic face appeared on the clear, plastic film when a researcher fogs it with her breath.

Terry Shyu, a doctoral student in chemical engineering at the University of Michigan, was demonstrating a new high-tech label for fighting drug counterfeiting. While the researchers don't envision movie stars on medicine bottles, but they used Monroe’s image to prove their concept.

Counterfeit drugs, which at best contain wrong doses and at worst are toxic, are thought to kill more than 700,000 people per year. While less than 1 percent of the U.S. pharmaceuticals market is believed to be counterfeit, it is a huge problem in the developing world where as much as a third of the available medicine is fake.

To fight back against these and other forms of counterfeiting, researchers at U-M and in South Korea have developed a way to make labels that change when you breathe on them, revealing a hidden image.

"One challenge in fighting counterfeiting is the need to stay ahead of the counterfeiters," said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Chemical Engineering who led the Michigan effort.

The method requires access to sophisticated equipment that can create very tiny features, roughly 500 times smaller than the width of a human hair. But once the template is made, labels can be printed in large rolls at a cost of roughly one dollar per square inch. That's cheap enough for companies to use in protecting the reputation of their products—and potentially the safety of their consumers.

"We use a molding process," Shyu said, noting that this inexpensive manufacturing technique is also used to make plastic cups.

The labels work because an array of tiny pillars on the top of a surface effectively hides images written on the material beneath. Shyu compares the texture of the pillars to a submicroscopic toothbrush. The hidden images appear when the pillars trap moisture.

"You can verify that you have the real product with just a breath of air," Kotov said.

The simple phenomenon could make it easy for buyers to avoid being fooled by fake packaging.

Previously, it was impossible to make nanopillars through cheap molding processes because the pillars were made from materials that preferred adhering to the mold rather than whatever surface they were supposed to cover. To overcome this challenge, the team developed a special blend of polyurethane and an adhesive.

The liquid polymer filled the mold, but as it cured, the material shrunk slightly. This allowed the pillars to release easily. They are also strong enough to withstand rubbing, ensuring that the label would survive some wear, such as would occur during shipping. The usual material for making nanopillars is too brittle to survive handling well.

The team demonstrated the nanopillars could stick to plastics, fabric, paper and metal, and they anticipate that the arrays will also transfer easily to glass and leather.

Following seed funding from the National Science Foundation's Innovation Corps program and DARPA's Small Business Technology Transfer program, the university is pursuing patent protection for the intellectual property and is seeking commercialization partners to help bring the technology to market.

This work is reported in Advanced Materials in a paper titled, "Shear-Resistant Scalable Nanopillar Arrays with LBL-Patterned Overt and Covert Images."

It was funded by the Defense Advanced Research Projects Agency; the National Science Foundation; the Korea Ministry of Science, Information and Communications Technology and Future Planning; the Ministry of Knowledge Economy; and the Korea Evaluation Institute of Industry Technology.

Nicole Casal Moore | newswise
Further information:
http://www.umich.edu

Further reports about: Advanced Materials Drug Technology materials nanopillars pharmaceuticals pillars special tiny

More articles from Materials Sciences:

nachricht An engineered surface unsticks sticky water droplets
01.09.2015 | Penn State

nachricht New material science research may advance tech tools
01.09.2015 | Louisiana State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

An engineered surface unsticks sticky water droplets

01.09.2015 | Materials Sciences

New material science research may advance tech tools

01.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>