Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D Printing Incorporates Quasicrystals for Stronger Manufacturing Products

31.10.2014

Researchers at the University of Lorraine in France say that quasicrystals, a type of complex metal alloy with crystal-like properties, can be useful in the design of new composite materials.

Automotive, aerospace and machinery industries, among others, are resorting more and more to the use of 3D printing methods to produce manufacturing components. There is a strong demand that the technologies involved in this process produce parts with stronger functional properties. This requires the development of new adaptable materials.


Picture of a porous preform made by selective laser sintering containing Al–Cu–Fe–B quasicrystal particles and a polymer binder. The lateral dimension of the preform is 5 cm. Sci. Technol. Adv. Mater. Vol. 15 (2014) p. 024802 (Fig. 2)

Copyright : The University of Lorraine

Researchers at the University of Lorraine in France say that quasicrystals, a type of complex metal alloy with crystal-like properties, can be useful in the design of new composite materials for this purpose.

In a review published by Science and Technology of Advanced Materials (http://dx.doi.org/10.1088/1468-6996/15/2/024802), Samuel Kenzari and co-authors summarized recent developments related to the use of complex metal alloys in additive manufacturing.

Additive manufacturing, commonly thought of as 3D printing, is a process that involves the manufacture of components from a digital model. Traditional manufacturing methods often start with an object and remove material from it in order to obtain the final component. In additive manufacturing, lasers are employed to build layers based on a digital model, ultimately resulting in the final component.

Additive manufacturing methods are becoming widespread and affect many industries. In 2012, they generated global revenues of US$ 2.2 billion. But the range of materials used is still restricted despite a real demand for manufacturing lighter parts with better functional properties.

Incorporating complex metal alloys (CMAs), such as quasicrystals, in the design of new composite materials can help meet this demand.

Complex metal alloys are promising because of their potentially useful properties such as low friction, relatively good corrosion resistance, and good resistance to wear. They are also, however, intrinsically brittle, preventing their use as bulk materials. Scientists, reports the University of Lorraine team of researchers, have found alternatives to circumvent this problem. One is to use CMAs as reinforcement particles. The other is to use them as a coating material.

CMAs have been used together with metals to develop lightweight composites that can be used in building 3D parts. These parts have mechanical properties similar to those of steel-brass composites currently used in the industry but with the advantage of having a lower density.

“Automotive and aeronautics industries are happy to have functional parts with a lower density,” explains one of co-authors, Prof. Fournee Vincent. “Reducing the weight of vehicles reduces fuel consumption.” A practical example is shown in figure.

Quasicrystals have also been used to reinforce polymer matrix composites used in 3D printing technologies. These new composites present several advantages compared to other materials with regards to friction, wear, and sealing.

Functional parts using both kinds of alloys are already being commercialized. Pipes and intake manifolds used in fluidic applications surrounding car engines are a good example.

The researchers are currently working on the development of functional parts made using CMAs that have health applications.

For more information contact:
Prof. Vincent Fournée
The University of Lorraine
Email: vincent.fournee@univ-lorraine.fr

Reference:
Complex metallic alloys as new materials for additive manufacturing
Samuel Kenzari, David Bonina, Jean Marie Dubois and Vincent Fournée:
Sci. Technol. Adv. Mater. Vol. 15 (2014) p. 024802.
doi:10.1088/1468-6996/15/2/024802

Mikiko Tanifuji | ResearchSEA
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Party discipline for jumping genes

22.09.2017 | Life Sciences

The pyrenoid is a carbon-fixing liquid droplet

22.09.2017 | Life Sciences

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>