Immune protein fends off exotic virus

This pathogen, which causes high fevers and severe joint pain, triggered a recent epidemic in Southeast Asia, infecting more than 30% of the population in some areas.

A team led by Marc Lecuit and Matthew Albert at the Pasteur Institute in Paris found that individuals infected with Chikungunya virus had increased levels of type I IFNs in their blood. But the source of the virus-fighting IFN proteins came as a surprise.

Viruses related to Chikungunya trigger type I IFN production mostly from immune cells. But during Chikungunya infection, immune cells neither produced nor responded to type I IFNs. Rather non-immune cells called fibroblasts—the main target of virus infection—provided the essential type I IFN.

This unique feature should be taken into consideration in future efforts to develop therapeutic strategies for controlling Chikungunya virus infection.

About The Journal of Experimental Medicine
The Journal of Experimental Medicine (JEM) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JEM content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jem.org.

Schilte, C., et al. 2010. J. Exp. Med. doi:10.1084/jem.20090851.

Media Contact

Rita Sullivan EurekAlert!

More Information:

http://www.rupress.org

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Microscopic basis of a new form of quantum magnetism

Not all magnets are the same. When we think of magnetism, we often think of magnets that stick to a refrigerator’s door. For these types of magnets, the electronic interactions…

An epigenome editing toolkit to dissect the mechanisms of gene regulation

A study from the Hackett group at EMBL Rome led to the development of a powerful epigenetic editing technology, which unlocks the ability to precisely program chromatin modifications. Understanding how…

NASA selects UF mission to better track the Earth’s water and ice

NASA has selected a team of University of Florida aerospace engineers to pursue a groundbreaking $12 million mission aimed at improving the way we track changes in Earth’s structures, such…

Partners & Sponsors