Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting tumors: Ion beam accelerators take aim at cancer

12.02.2014
AAAS symposium and press briefing to explore the physics, biology, and clinical use of advanced particle therapy cancer treatments and related economic and ethical issues

EVENT: Advances in the design and operation of particle accelerators built for basic physics research are leading to the rapid evolution of machines that deliver cancer-killing beams. Hear about the latest developments and challenges in this field from a physicist, a radiobiologist, and a clinical oncologist, and participate in a discussion about cost, access, and ethics at a symposium organized by the U.S. Department of Energy's Brookhaven National Laboratory ("Targeting Tumors: Ion Beam Accelerators Take Aim at Cancer") and at a related press briefing--both to be held at the 2014 meeting of the American Association for the Advancement of Science.

WHEN: Sunday, February 16, 2014, 8:00 a.m. Central Time (symposium) and 11:00 a.m. (press briefing)

WHERE: Symposium: Hyatt Regency Chicago, Grand Ballroom A; Press Briefing: Swissotel, AAAS briefing room, adjacent to the newsroom, second floor.

WEBCAST: For reporters unable to attend the meeting, the press briefing portion will be webcast live and archived in the AAAS meeting newsroom.

DETAILS: As particle accelerator technology has been incorporated into the clinical practice of treating cancer, the trend has been toward less expensive, more versatile particle beam delivery systems, designed for improved efficacy and greater access for cancer patients around the world. Proton and ion beams are particularly attractive in treating cancer because they deposit most of their energy where the beam stops (i.e., in the tumor) rather than in the tissue through which they travel. As a result, particle beams can deliver cell-killing energy with extreme precision, allowing less damage to adjacent healthy tissue than conventional x-ray or electron radiation treatments.

Protons have been in use for some time at several facilities in the U.S. Beams of heavier ions such as carbon offer promise of even greater efficacy, based on the physics and expected radiobiological effects, as well as on preliminary evidence from facilities operating in Europe and Japan. There are currently no carbon therapy cancer treatment facilities operating in the U.S., and while experience from Europe and Asia suggests that the cost of building one would be considerable, the U.S. National Cancer Institute recently announced a funding opportunity to encourage and support plans for a center for particle beam radiation therapy research.

This symposium and press briefing will explore the scientific rationale behind hadron beam therapy (using protons and heavier ions such as carbon) from the perspectives of a physicist who designs state-of-the-art particle accelerators, a radiobiologist exploring how those particle beams affect cells and tumors, and a radiation oncologist in clinical practice. The session will also address the questions of how to test the relative efficacy of hadron therapy versus conventional radiation treatment and ethical issues related to clinical trials, how to leverage scientific expertise to bring advances driven by basic research to the benefit of society at large, and potential ways to increase treatment access for patients through cost-saving accelerator designs.

SPEAKERS

Stephen Peggs, Physicist, Brookhaven National Laboratory, Adjunct Professor, Stony Brook University (Advances in Accelerator Science Deliver Precision Beams for Cancer Therapy)

Kathryn Held, Radiation Biologist, Associate Professor of Radiation Oncology, Harvard Medical School; associate radiation biologist, Massachusetts General Hospital (Charged Particles for Cancer Treatment: The Benefits of Ions over Photons)

Hak Choy, Chair, Department of Radiation Oncology at the University of Texas Southwestern Medical Center (The Clinical Perspective: Does Proton/Ion Beam Therapy Work?)

Discussant: Ken Peach, Professor, Particle Therapy Cancer Research Institute at Oxford Martin School, Oxford University

Moderator: James Deye, Program Director, Division of Cancer Treatment and Diagnosis, Radiation Research Program, National Cancer Institute

This session was organized by Karen McNulty Walsh, Media & Communications Office, Brookhaven National Laboratory with Co-Organizers Stephen Peggs, Physicist, Brookhaven National Laboratory, and Eric Colby, Office of Science, U.S. Department of Energy.

For more details, including links to talk summaries, see: http://aaas.confex.com/aaas/2014/webprogram/Session6784.html

Brookhaven Lab's role in this research and this symposium is funded by the DOE Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>