Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Typhoid Fever – A race against time

16.01.2014
The life-threatening disease typhoid fever results from the ongoing battle between the bacterial pathogen Salmonella and the immune cells of the body.

Prof. Dirk Bumann’s research group at the Biozentrum of the University of Basel has now uncovered how the typhoid pathogen repeatedly manages to evade the host’s immune system. Their findings are published in the scientific journal “Cell Host & Microbe”.


Salmonella-infected cells (macrophages in blue, monocytes in turquoise). Dead Salmonella (only yellow), surviving Salmonella (yellow and red).

Illustration: University of Basel

Typhoid fever is a bacterial infection caused by the pathogen Salmonella. The infected host’s immune system detects Salmonella and activates immune cells such as neutrophils and monocytes. These cells infiltrate the infected tissue and enclose the infection to form an abscess. Although most Salmonella bacteria are readily killed by this immune reaction, Dirk Bumann’s group has demonstrated that some escape from the abscess and thus ensure their survival.

Salmonella uses immune cells

Once outside the abscess, the Salmonella bacteria are attacked by other immune cells, the so-called macrophages that produce a less effective immune response. “Salmonella have developed a range of defense strategies to resist macrophage attacks. Many Salmonella are thus able to survive and even to replicate in macrophages,” explains Neil Burton, one of the two first authors. With time, abscesses form around the new infection foci but again some Salmonella bacteria can manage to escape.

“This drives the whole infection process further and makes typhoid fever particularly insidious,” says Nura Schürmann, also a first author of the publication.

A battle on many fronts

The whole disease process is a race between Salmonella and the immune system of the infected organism, in which the battle is fought on many fronts. In this process many Salmonella bacteria are killed and others survive to spread the infection. It is the net balance of the outcomes of these individual Salmonella and immune cell encounters which in the end determines the course of the illness.

Typhoid fever is a life-threatening infection in countries with poor hygiene. Each year, more than 20 million people are infected with this disease. The illness is transmitted by ingesting food or water contaminated with this bacterium. Once inside the intestine, Salmonella crosses the gut mucosa and spreads to other organs such as the spleen and liver. Growing antibiotic resistance makes this illness increasingly difficult to cure.

Understanding what factors enable Salmonella to win many encounters with host cells might provide new strategies in the treatment of typhoid fever. Similar heterogeneous encounters likely determine the fights between the host and many other pathogens. Findings of this study may thus be relevant for a wide range of infectious diseases.

Original Citation
Neil A. Burton, Nura Schürmann, Olivier Casse, Anne K. Steeb, Beatrice Claudi, Janine Zankl, Alexander Schmidt, Dirk Bumann
Disparate Impact of Oxidative Host Defenses Determines the Fate of Salmonella during Systemic Infection in Mice
Cell Host & Microbe, Volume 15, Issue 1, 72-83, 15 January 2014 |
doi: 10.1016/j.chom.2013.12.006
Further Information
Prof. Dr. Dirk Bumann, University of Basel, Biozentrum,
phone: +41 61 267 23 82, Email: dirk.bumann@unibas.ch

Olivia Poisson | Universität Basel
Further information:
http://www.unibas.ch
http://unibas.ch/index.cfm?uuid=8B97DAF7F3F274D35D46A5758BA461CC&type=search&show_long=1&&o_lang_id=2

Further reports about: Biozentrum Salmonella immune cell immune system typhoid typhoid fever

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>