Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Surf's up: Turbulence tells sea urchins to settle down

Tumbling in the waves as they hit a rocky shore tells purple sea urchin larvae it's time to settle down and look for a spot to grow into an adult, researchers at the University of California, Davis, Bodega Marine Laboratory have found. The work is published April 8 in the journal Proceedings of the National Academy of Sciences.
"How these animals find their way to the right habitat is a fascinating problem," said Brian Gaylord, professor of evolution and ecology at UC Davis and a researcher at the Bodega Marine Lab. "The turbulence response allows them to tell that they're in the right neighborhood."

Like most shoreline animals, purple sea urchins (Strongylocentrotus purpuratus) have a two-stage life cycle. The young are microscopic, look completely different from adults and drift in the upper levels of the ocean for about a month before settling on a rocky shore and transforming into the familiar spiny adult.

"Once they decide to settle, they attach to a rock and undergo body remodeling into a juvenile sea urchin with spines," Gaylord said.

Over short distances, the larvae can respond to chemical traces in the water, especially substances that might be given off from a rock thick with algae or other food for the growing urchins.

But how do the larvae know they are close enough to the right shoreline habitat to start searching for such signals?

On the California coast, rocky headlands — the urchins' preferred environment — are interspersed with long stretches of beach that experience lower levels of turbulence. The larvae don't have the resources to swim for miles along a beach looking for a nice slimy rock, but when carried by currents near a wave-swept rocky reef, the high turbulence tells them to begin a finer-scale search, the researchers found.

Gaylord and co-authors Jason Hodin of Stanford University's Hopkins Marine Station and Matthew Ferner of San Francisco State University used a device called a Taylor-Couette cell to see how urchin larvae responded to being churned by shear forces comparable to those in waves breaking on a rocky shore.

The Taylor-Couette cell consists of one rotating cylinder inside another, with a layer of fluid in between. When the cylinders spin relative to each other, they set up shear forces in the fluid. Scientists more typically use the device for studying fluid dynamics, especially the transition where flows becomes chaotic and turbulence appears.

Gaylord and his colleagues took the urchin larvae for a spin through a Taylor-Couette cell then exposed them to potassium, known to act as a chemical signal that triggers larvae to begin settling.

Larvae that had been exposed to turbulence responded to the chemical signal earlier in development than those that had not — in fact, they responded at a stage at which it had previously been believed larvae could not settle.

Especially telling was that neither turbulence nor the chemical signal alone promoted settling at this earlier developmental stage.

The experiment shows that the shift from living free in the ocean to living on a rock is a two-step process, Gaylord said. In the first step, exposure to turbulence initiates an abrupt transition to a state in which the larvae are "competent to settle." A chemical signal triggers the second step, actual settlement, and the larvae then complete their transformation into juvenile sea urchins.

It's not yet clear how the larvae detect turbulence, Gaylord said. That might happen through receptors that respond to stretching or flexing. The two-step settlement process might occur in other species that settle on shorelines, he said.

The work was supported by the National Science Foundation and the National Oceanic and Atmospheric Administration.
About UC Davis

For more than 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has more than 33,000 students, more than 2,500 faculty and more than 21,000 staff, an annual research budget of nearly $750 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.
Media contact(s):
Brian Gaylord, Bodega Marine Laboratory, (707) 875 1940,
Andy Fell, UC Davis News Service, (530) 752-4533,

Andy Fell | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>