Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists invent advanced approach to identify new drug candidates from genome sequence

10.02.2014
As proof-of-principle, the team designs potent anti-cancer compound

In research that could ultimately lead to many new medicines, scientists from the Florida campus of The Scripps Research Institute (TSRI) have developed a potentially general approach to design drugs from genome sequence. As a proof of principle, they identified a highly potent compound that causes cancer cells to attack themselves and die.


The new method identified a highly potent compound that causes cancer cells to attack themselves and die.

Credit: Image courtesy of the Disney lab, The Scripps Research Institute.

"This is the first time therapeutic small molecules have been rationally designed from only an RNA sequence—something many doubted could be done," said Matthew Disney, PhD, an associate professor at TSRI who led the study. "In this case, we have shown that that approach allows for specific and unprecedented targeting of an RNA that causes cancer."

The technique, described in the journal Nature Chemical Biology online ahead of print on February 9, 2014, was dubbed Inforna.

"With our program, we can identify compounds with high specificity," said Sai Pradeep Velagapudi, the first author of the study and a graduate student working in the Disney lab. "In the future, we hope we can design drug candidates for other cancers or for any pathological RNA."

In Search of New Approaches

In their research program, Disney and his team has been developing approaches to understand the binding of drugs to RNA folds. In particular, the lab is interested in manipulating microRNAs.

Discovered only in the 1990s, microRNAs are short molecules that work within virtually all animal and plant cells. Typically each one functions as a "dimmer switch" for one or more genes; it binds to the transcripts of those genes and effectively keeps them from being translated into proteins. In this way microRNAs can regulate a wide variety of cellular processes.

Some microRNAs have been associated with diseases. MiR-96 microRNA, for example, is thought to promote cancer by discouraging a process called apoptosis or programmed cell death that can rid the body of cells that begin to grow out of control.

As part of its long-term program, the Disney lab developed computational approaches that can mine information against such genome sequences and all cellular RNAs with the goal of identifying drugs that target such disease-associated RNAs while leaving others unaffected.

"In recent years we've seen an explosion of information about the many roles of RNA in biology and medicine," said Peter Preusch, PhD, of the National Institute of Health's National Institute of General Medical Sciences, which partially funded the research. "This new work is another example of how Dr. Disney is pioneering the use of small molecules to manipulate disease-causing RNAs, which have been underexplored as potential drug targets."

'Unprecedented' Findings

In the new study, Disney and colleagues describe their computational technique, which identifies optimal drug targets by mining a database of drug-RNA sequence ("motif") interactions against thousands of cellular RNA sequences.

Using Inforna, the team identified compounds that can target microRNA-96, as well as additional compounds that target nearly two dozen other disease-associated microRNAs.

The researchers showed that the drug candidate that inhibited microRNA-96 inhibited cancer cell growth. Importantly, they also showed that cells without functioning microRNA-96 were unaffected by the drug.

"This illustrates an unparalleled selectivity for the compound," Disney noted. "In contrast, typical cancer therapeutics target cells indiscriminately, often leading to side effects that can make these drugs difficult for patients to tolerate."

Disney added that the new drug candidate, which is easy to produce and cell permeable, targets microRNA-96 far more specifically than the state-of-the-art method to target RNA (using oligonucleotides) currently in use. "That's unprecedented and provides great excitement for future developments."

In addition to Disney and Velagapudi, Steven M. Gallo of the University of Buffalo was an author of the study, "Sequence-Based Design of Bioactive Small Molecules That Target Precursor MicroRNAs."

The work was supported by the National Institutes of Health (grant R01GM097455) and the Camille and Henry Dreyfus Foundation.

Eric Sauter | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>