Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify genetic mutation for rare cancer

16.01.2013
Gene sequencing program gives researchers new leads to improve cancer treatment

It started with a 44-year-old woman with solitary fibrous tumor, a rare cancer seen in only a few hundred people each year.

By looking at the entire DNA from this one patient's tumor, researchers have found a genetic anomaly that provides an important clue to improving how this cancer is diagnosed and treated.

Researchers at the University of Michigan Comprehensive Cancer Center sequenced the tumor's genome through a new program called MI-ONCOSEQ, which is designed to identify genetic mutations in tumors that might be targeted with new therapies being tested in clinical trials.

The sequencing also allows researchers to find new mutations. In this case, an unusual occurrence of two genes - NAB2 and STAT6 - fusing together. This is the first time this gene fusion has been identified.

"In most cases, mutations are identified because we see them happening again and again. Here, we had only one case of this. We knew NAB2-STAT6 was important because integrated sequencing ruled out all the known cancer genes. That allowed us to focus on what had been changed," says lead study author Dan R. Robinson, research fellow with the Michigan Center for Translational Pathology.

Once they found the aberration, the researchers looked at 51 other tumor samples from benign and cancerous solitary fibrous tumors, looking for the NAB2-STAT6 gene fusion. It showed up in every one of the samples. Results are published online in Nature Genetics.

"Genetic sequencing is extremely important with rare tumors," says study co-author Scott Schuetze, M.D., associate professor of internal medicine at the U-M Medical School. "Models of rare cancers to study in the laboratory are either not available or very limited. The sequencing helps us to learn more about the disease that we can use to develop better treatments or to help diagnose the cancer in others."

The NAB2-STAT6 fusion may prove to be a difficult target for therapies, but researchers believe they may be able to attack the growth signaling cycle that leads to this gene fusion.

"Understanding the changes induced in the cell by the NAB2-STAT6 gene fusion will help us to select novel drugs to study in patients with advanced solitary fibrous tumors. Currently this is a disease for which there are no good drug therapies available and patients are in great need of better treatments," Schuetze says.

No treatments or clinical trials are currently available based on these findings. Additional testing in the lab is needed to assess the best way to target NAB2-STAT6. The gene fusion could also potentially be used to help identify solitary fibrous tumors in cases where diagnosis is challenging.

Additional authors: Yi-Mi Wu; Shanker Kalyana-Sundaram; Xuhong Cao; Robert J. Lonigro; Yun-Shao Sung; Rui Wang; Fengyun Su; Matthew K. Iyer; Sameek Roychowdhury; Javed Siddiqui; Kenneth J. Pienta; Lakshmi P. Kunju; Moshe Talpaz; and Arul M. Chinnaiyan from U-M; Chun-Liang Chen; Lei Zhang; Samuel Singer; and Cristina R. Antonescu from Memorial Sloan-Kettering Cancer Center; Juan Miguel Mosquera from Weill Cornell Medical College.

Funding: National Cancer Institute grants: U01 CA111275, 5 P30 CA46592, P01 CA047179-15A2, and P50 CA140146-01; National Functional Genomics Center grant W81XWH-11-1-0520; U.S. Department of Defense; the Linn Fund, Cycle for Survival, the Alan Rosenthal Research Fund for Research in Sarcoma, the Weinstein Solitary Fibrous Tumor Research Fund, Doris Duke Charitable Foundation, Burroughs Wellcome Foundation, American Cancer Society, A. Alfred Taubman Institute at the University of Michigan.

Disclosure: The University of Michigan has filed for patent protection on the NAB2-STAT6 gene fusion and is currently looking for licensing partners to help bring the technology to market.

Reference: Nature Genetics, published online Jan. 13, 2013, DOI: 10.1038/ng.2509

Written by Nicole Fawcett

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>