Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Craft Tool to Minimize Threat of Endocrine Disruptors in New Chemicals

07.12.2012
Researchers from North Carolina State University, the National Institute of Environmental Health Sciences and a host of other institutions have developed a safety testing system to help chemists design inherently safer chemicals and processes.

The innovative “TiPED” testing system (Tiered Protocol for Endocrine Disruption) stems from a cross-disciplinary collaboration among scientists, and can be applied at different phases of the chemical design process. The goal of the system is to help steer companies away from inadvertently creating harmful products, and thus avoid adding another BPA or DDT to the marketplace.

A paper describing the work, “Designing Endocrine Disruption Out of the Next Generation of Chemicals,” is published online in the Royal Society of Chemistry journal Green Chemistry.

“In order to reduce our exposure to endocrine disruptors, we have to ensure that new products entering the market do not contain them,” says Dr. Heather Patisaul, an associate professor of biology at NC State and co-author of the paper. “The goal of this project is to develop an effective strategy for chemists, engineers, and manufacturers to identify potential endocrine disruptors before they are used in commercial products. Identifying these types of chemicals early in the design process will ultimately help ensure that we develop the safest products possible, which benefits consumers.”

The work was conducted by biologists, green chemists and others from North America and Europe who say that recent product recalls and bans reveal that neither product manufacturers nor governments have adequate tools for dealing with endocrine disrupting chemicals (EDCs). EDCs are chemicals commonly used in consumer products that can mimic hormones and lead to a host of modern-day health epidemics including cancers, learning disabilities and immune system disorders.

The authors conclude that as our understanding of the threat to human health grows, the need for an effective testing strategy for endocrine disrupting chemicals becomes imperative.

Historically, chemists have aimed to make products that are effective and economical. Considering toxicity when designing new chemicals has not been their responsibility. This collaboration between fields expands the scope of both biologists and chemists to lead to a way to design safer chemicals.

There is a companion website to the paper, www.TiPEDinfo.com. One can access the paper there and learn more about the TiPED system.

The paper was co-authored by researchers from NC State, NIEHS, the University of California, San Diego, the University of California, Irvine, Carnegie Mellon University, University of Texas at Austin, Virginia Commonwealth University, Advancing Green Chemistry, Louisiana Tech University, Medical University of South Carolina, University of California, Berkeley, McGill University, Oregon State University, Tufts University, the Warner Babcock Institute for Green Chemistry, the University of Texas Medical Branch, the University of Missouri–Columbia, the University of Massachusetts-Amherst and Environmental Health Sciences.

-shipman-

Note to Editors: The study abstract follows.

“Designing endocrine disruption out of the next generation of chemicals”

Authors: T. T. Schug, R. Abagyan, B. Blumberg, T. J. Collins, D. Crews, P. L. DeFur, S. M. Dickerson, T. M. Edwards, A. C. Gore, L. J. Guillette, T. Hayes, J. J. Heindel, A. Moore , H. B. Patisaul, T. L. Tal, K. A. Thayer, L. N. Vandenberg, J. C. Warner, C. S. Watson, F. S. vom Saal, R. T. Zoeller, K. P. O’Brien and J. P. Myers.

Published: Dec. 6, Green Chemistry

Abstract: A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical’s potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at “the drawing board.” It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability.

In a ‘proof-of-principle’ test, we ran 6 endocrine disrupting chemicals (EDCs) that act via different endocrinological mechanisms through the protocol using published literature. Each was identified as endocrine active by one or more tiers. We believe that this voluntary testing protocol will be a dynamic tool to facilitate efficient and early identification of potentially problematic chemicals, while ultimately reducing the risks to public health.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Nerve cells with a sense of rhythm
25.08.2016 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

Scientists identify spark plug that ignites nerve cell demise in ALS

25.08.2016 | Health and Medicine

Secure networks for the Internet of the future

25.08.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>