Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Craft Tool to Minimize Threat of Endocrine Disruptors in New Chemicals

07.12.2012
Researchers from North Carolina State University, the National Institute of Environmental Health Sciences and a host of other institutions have developed a safety testing system to help chemists design inherently safer chemicals and processes.

The innovative “TiPED” testing system (Tiered Protocol for Endocrine Disruption) stems from a cross-disciplinary collaboration among scientists, and can be applied at different phases of the chemical design process. The goal of the system is to help steer companies away from inadvertently creating harmful products, and thus avoid adding another BPA or DDT to the marketplace.

A paper describing the work, “Designing Endocrine Disruption Out of the Next Generation of Chemicals,” is published online in the Royal Society of Chemistry journal Green Chemistry.

“In order to reduce our exposure to endocrine disruptors, we have to ensure that new products entering the market do not contain them,” says Dr. Heather Patisaul, an associate professor of biology at NC State and co-author of the paper. “The goal of this project is to develop an effective strategy for chemists, engineers, and manufacturers to identify potential endocrine disruptors before they are used in commercial products. Identifying these types of chemicals early in the design process will ultimately help ensure that we develop the safest products possible, which benefits consumers.”

The work was conducted by biologists, green chemists and others from North America and Europe who say that recent product recalls and bans reveal that neither product manufacturers nor governments have adequate tools for dealing with endocrine disrupting chemicals (EDCs). EDCs are chemicals commonly used in consumer products that can mimic hormones and lead to a host of modern-day health epidemics including cancers, learning disabilities and immune system disorders.

The authors conclude that as our understanding of the threat to human health grows, the need for an effective testing strategy for endocrine disrupting chemicals becomes imperative.

Historically, chemists have aimed to make products that are effective and economical. Considering toxicity when designing new chemicals has not been their responsibility. This collaboration between fields expands the scope of both biologists and chemists to lead to a way to design safer chemicals.

There is a companion website to the paper, www.TiPEDinfo.com. One can access the paper there and learn more about the TiPED system.

The paper was co-authored by researchers from NC State, NIEHS, the University of California, San Diego, the University of California, Irvine, Carnegie Mellon University, University of Texas at Austin, Virginia Commonwealth University, Advancing Green Chemistry, Louisiana Tech University, Medical University of South Carolina, University of California, Berkeley, McGill University, Oregon State University, Tufts University, the Warner Babcock Institute for Green Chemistry, the University of Texas Medical Branch, the University of Missouri–Columbia, the University of Massachusetts-Amherst and Environmental Health Sciences.

-shipman-

Note to Editors: The study abstract follows.

“Designing endocrine disruption out of the next generation of chemicals”

Authors: T. T. Schug, R. Abagyan, B. Blumberg, T. J. Collins, D. Crews, P. L. DeFur, S. M. Dickerson, T. M. Edwards, A. C. Gore, L. J. Guillette, T. Hayes, J. J. Heindel, A. Moore , H. B. Patisaul, T. L. Tal, K. A. Thayer, L. N. Vandenberg, J. C. Warner, C. S. Watson, F. S. vom Saal, R. T. Zoeller, K. P. O’Brien and J. P. Myers.

Published: Dec. 6, Green Chemistry

Abstract: A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical’s potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at “the drawing board.” It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability.

In a ‘proof-of-principle’ test, we ran 6 endocrine disrupting chemicals (EDCs) that act via different endocrinological mechanisms through the protocol using published literature. Each was identified as endocrine active by one or more tiers. We believe that this voluntary testing protocol will be a dynamic tool to facilitate efficient and early identification of potentially problematic chemicals, while ultimately reducing the risks to public health.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>