Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Scientists Uncover Inner Workings of Rare Eye Cells

27.01.2005


A Brown University team has found that a protein called melanopsin plays a key role in the inner workings of mysterious, spidery cells in the eye called intrinsically photosensitive retinal ganglion cells, or ipRGCs.


Visual clues to daily rhythms - Intrinsically photosensitive retinal ganglion cells – ipRGCs, right – were discovered in 2002. New research shows that the protein melanopsin enables ipRGCs to do their job of setting the body’s master circadian clock. It may be an extremely ancient system in terms of evolution, researchers say.



Melanopsin, they found, absorbs light and triggers a biochemical cascade that allows the cells to signal the brain about brightness. Through these signals, ipRGCs synchronize the body’s daily rhythms to the rising and setting of the sun. This circadian rhythm controls alertness, sleep, hormone production, body temperature and organ function. Brown researchers, led by neuroscientist David Berson, announced the discovery of ipRGCs in 2002. Their work was astonishing: Rods and cones aren’t the only light-sensitive eye cells.

Like rods and cones, ipRGCs turn light energy into electrical signals. But while rods and cones aid sight by detecting objects, colors and movement, ipRGCs gauge overall light intensity. Numbering only about 1,000 to 2,000 out of millions of eyes cells, ipRGCs are different in another way: They have a direct link to brain, sending a message to the tiny region that controls the body clock about how light or dark the environment is. The cells are also responsible for narrowing the pupil of the eye.


“It’s a general brightness detection system in the eye,” said Berson, the Sidney A. Fox and Dorothea Doctors Fox Professor of Ophthalmology and Visual Sciences. “What we’ve done now is provide more details about how this system works.”

The research, published in the current issue of Nature, provides the first evidence that melanopsin is a functional sensory photopigment. In other words, this protein absorbs light and sets off a chain of chemical reactions in a cell that triggers an electrical response. The study also showed that melanopsin plays this role in ganglion-cell photoreceptors, helping them send a powerful signal to the brain that it is day or night.

The team made the discovery by inserting melanopsin into cells taken from the kidneys and grown in culture. These cells, which are not normally sensitive to light, were transformed into photoreceptors when flooded with melanopsin. In fact, the kidney cells responded to light almost exactly the way ipRGCs do, confirming that melanopsin is the photopigment for ganglion-cell photoreceptors. “This resolves a key question about the function of these cells,” Berson said. “And so little is known about them, anything we learn is important.”

Berson and his team made another intriguing finding: The biochemical cascade sparked by melanopsin is closer to that of eye cells in invertebrates like fruit flies and squid than in spined animals such as mice, monkeys or humans. “The results may well tell us that this is an extremely ancient system in terms of evolution,” Berson said. “We may have a bit of the invertebrate in our eyes.”

The research team from Brown included lead author and post-doctoral research associate Xudong Qiu and post-doctoral research associate Kwoon Wong, both in the Department of Neuroscience, as well as graduate students Stephanie Carlson and Vanitha Krishna in the Neuroscience Graduate Program. Tida Kumbalasiri and Ignacio Provencio from the Uniformed Services University of the Health Sciences also contributed to the research.

The National Institutes of Health funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>