Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Origins of plague

Scientists reveal the cause of one of the most devastating pandemics in human history

An international team of scientists has discovered that two of the world’s most devastating plagues – the plague of Justinian and the Black Death, each responsible for killing as many as half the people in Europe — were caused by distinct Yersinia pestis strains, one that faded out on its own, the other leading to worldwide spread and re-emergence in the late 1800s. These findings suggest a new strain of plague could emerge again in humans in the future.

Burial of plague victims at the early medieval cemetery Aschheim. Foto: © H-P. Volpert

Fig. 2: Plague victim analyzed in the lab.
Foto: SNSB

Using sophisticated methods, researchers from various institutions including McMaster University, State Collection of Anthropology and Paleoanatomy, Munich, Bundeswehr Institute of Microbiology, Munich, Northern Arizona University and the University of Sydney, isolated miniscule DNA fragments from the 1500-year-old teeth of two victims of the Justinian plague, buried in Bavaria, Germany. These are the oldest pathogen genomes obtained to date.

Using these short fragments, they reconstructed the genome of the oldest Yersinia pestis, the bacterium responsible for the plague, and compared it to a database of genomes of more than a hundred contemporary strains.

The results are currently published in the online edition of Lancet Infectious Disease. They show the strain responsible for the Justinian outbreak was an evolutionary ‘dead-end’ and distinct from strains involved later in the Black Death and other plague pandemics that would follow.

“The research is both fascinating and perplexing, it generates new questions which need to be explored, for example why has this particular Y. pestis strain no genetic successors and died out?” questions Holger Scholz, head of the department of Bacteriology and Toxinology at the Bundeswehr Institute of Microbiology in Munich.

The findings are dramatic because little has been known about the origins or cause of the Justinian Plague– which helped bring an end to the Eastern Roman Empire – and its relationship to the Black Death, some 800 years later.

The Plague of Justinian struck in the sixth century and is estimated to have killed between 30 and 50 million people— virtually half the world’s population as it spread across Asia, North Africa, Arabia and Europe. The Black Death would strike some 800 years later with similar force, killing 50 million Europeans between just 1347 and 1351 alone.

The third pandemic, which spread from Hong Kong across the globe is likely a descendant of the Black Death strain and thus much more successful than the one responsible for the Justinian Plague.

“We know the bacterium Y. pestis has jumped from rodents into humans throughout history and rodent reservoirs of plague still exist today in many parts of the world. If the Justinian plague could erupt in the human population, cause a massive pandemic, and then die out, it suggests it could happen again. Fortunately we now have antibiotics that could be used to effectively treat plague, which lessens the chances of another large scale human pandemic” says Dave Wagner, an associate professor in the Center for Microbial Genetics and Genomics at Northern Arizona University. However, we should not underestimate the devastating potential of plague, as in recent years strains emerged which are resistant to antibiotics, routinely used in plague therapy, adds Holger Scholz.

The samples used in the latest research were taken from two victims of the Justinian plague, buried in a gravesite in a small cemetery in the German town of Aschheim. The skeletal remains of the early medieval cemetery of Aschheim are examined by researchers of the Munich State Collection of Anthropology and Paleoanatomy since several years”, says Michaela Harbeck, curator of this institution which keeps ten thousands of skeletons, each of them an unique historical and biological source.

The skeletal remains yielded important clues and raised more questions.
Our response to modern infectious diseases is a direct outcome of lessons learned from ancestral pandemics, say the researchers.

Researchers now believe the Justinian Y. pestis strain originated in Asia, not in Africa as originally thought.

“This study raises intriguing questions about why a pathogen that was both so successful and so deadly today only infects about 3000 people each year. From our genome analyses we know that Yersinia pestis from both the Black Death and the Justinian plague was not more dangerous than present Y. pestis strains, says Holger Scholz. One testable possibility is that human populations evolved to become less susceptible,” says Holmes. “Another possibility is that changes in the climate became less suitable for the plague bacterium to survive in the wild,” says Julia Riehm of the Bundeswehr Institut of Microbiology.

Scientists hope their research could lead to a better understanding of the dynamics of modern infectious disease, including a form of the plague that still kills thousands every year.

The research was funded in part by the Social Sciences and Humanities Research Council of Canada, Canada Research Chairs Program, U.S. Department of Homeland Security, U.S. National Institutes of Health and the Australian National Health and Medical Research Council.

For more information please contact:

PD Dr. Holger C. Scholz
Bundeswehr Institute of Microbiology
Neuherbergstarsse 11
80937 Munich
++49 89 3168 2805
Dr. Michaela Harbeck
Staatssammlung of anthropology and paläoanatomy Munich

Dr. Eva-Maria Natzer | idw
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>