Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic identifies a key cellular pathway in prostate cancer

11.02.2014
Mayo Clinic researchers have shed light on a new mechanism by which prostate cancer develops in men.

Central to development of nearly all prostate cancer cases are malfunctions in the androgen receptor — the cellular component that binds to male hormones. The research team has shown that SPOP, a protein that is most frequently mutated in human prostate cancers, is a key regulator of androgen receptor activity that prevents uncontrolled growth of cells in the prostate and thus helps prevent cancer. The findings appear in the journal Cell Reports.

"By uncovering this new and important pathway of androgen receptor destruction, we may one day be able to develop more effective treatments for a substantial proportion of prostate cancer patients who have developed resistance to standard antiandrogen therapy," says Haojie Huang, Ph.D., Mayo Clinic biochemist and senior author of the paper.

SPOP mutations have been detected in approximately 15 percent of prostate cancer cases. In addition, it has been shown that in about 35 percent of prostate cancers, the SPOP protein is expressed at abnormally low levels. Despite its prevalence in prostate cancer, it was not known whether or how SPOP defects contributed to tumor development. What the research team discovered is that SPOP is an enzyme that selectively destroys androgen receptor protein. Failure to do so due to alterations in SPOP results in overabundance of androgen receptor, a master regulator of prostate cancer cell growth.

The Mayo Clinic research team made four major discoveries:

•The antiandrogen receptor is a bona fide degradation substrate of SPOP.
•Androgen receptor splicing variants are resistant to SPOP-mediated degradation.
•Prostate cancer-associated SPOP mutants cannot bind to and promote androgen receptor degradation.

•Androgens antagonize, but antiandrogens promote SPOP-mediated degradation of androgen receptor.

Prostate Cancer Background

Prostate cancer is the second most common cause of cancer in men and the second leading cause of cancer death in American men, with over 913,000 new cases and over 261,000 deaths worldwide each year. Because of the widespread disability and death that prostate cancer causes, finding new strategies to develop better treatments is an important public health goal.

Androgen receptor is essential for normal prostate cell growth and survival. It is also important for initiation and progression of prostate cancer. Androgen deprivation therapy, including chemical castration and/or antiandrogen therapy, is the mainstay for treating advanced/disseminated prostate cancer. However, tumors almost always reoccur two to three years after initial response and relapse into a disease called castration-resistant prostate cancer. Development of this therapy-resistant symptom is related to a persistent activation of androgen receptor.

Co-authors of the article include Jian An, Ph.D.; Chenji Wang, Ph.D.; Yibin Deng, Ph.D.; and Long Yu, M.D., Ph.D., all of Mayo Clinic. Their research was supported by the National Institutes of Health and the Mayo Clinic Cancer Center. Dr. Huang is a member of the Mayo Clinic Cancer Center and the departments of Biochemistry and Molecular Biology, and Urology.

About Mayo Clinic

Recognizing 150 years of serving humanity in 2014, Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit 150years.mayoclinic.org, http://www.mayoclinic.org and newsnetwork.mayoclinic.org.
MEDIA CONTACT:
Robert Nellis, Mayo Clinic Public Affairs,
507-284-5005, newsbureau@mayo.edu

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: Cancer SPOP androgen receptor cell growth effective treatment prostate cancer

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>